Modeling and Decoupling the GPU Power Consumption for Cross-Domain DVFS
Dynamic voltage and frequency scaling (DVFS) is a popular technique to improve the energy-efficiency of high-performance computing systems. It allows placing the devices into lower performance states when the computational demands are lower, opening the possibility for significant power/energy savin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2019-11, Vol.30 (11), p.2494-2506 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2506 |
---|---|
container_issue | 11 |
container_start_page | 2494 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 30 |
creator | Guerreiro, Joao Ilic, Aleksandar Roma, Nuno Tomas, Pedro |
description | Dynamic voltage and frequency scaling (DVFS) is a popular technique to improve the energy-efficiency of high-performance computing systems. It allows placing the devices into lower performance states when the computational demands are lower, opening the possibility for significant power/energy savings. This work presents a GPU power consumption model, used to predict the GPU power consumption of any application at different frequency levels. To obtain this model, an estimation algorithm is proposed, relying on careful benchmarking of the GPU architecture. The model can estimate the contribution of twelve different GPU components (FP32-ADD/MUL/FMA, FP64-ADD/MUL/FMA, INT, SF, CF units, shared memory, L2-cache, and DRAM) to the GPU power consumption. Different model use cases are evaluated (fixed-frequency, DVFS, and scaling-factors), which can obtain both the total or the per-component GPU power consumption. A technique to export models to a distinct GPU from the one it was estimated on is also proposed. These approaches were extensively validated on five different GPUs from the three most recent microarchitectures with a set of 42 standard benchmarks, achieving very accurate predictions. In particular, the scaling-factor power model achieves an average prediction error of 3.5 percent (Titan Xp), 4.6 percent (GTX Titan X), 3.1 percent (GTX 980) and 2.4 percent (Tesla K40c). |
doi_str_mv | 10.1109/TPDS.2019.2917181 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8716300</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8716300</ieee_id><sourcerecordid>2303978447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-34ad90715c2f786ebb6ea60f6b4678f77bfed96f03b3edf97e5696c43dab2d873</originalsourceid><addsrcrecordid>eNo9kFtLw0AQhRdRsFZ_gPgS8DlxZ3ezl0dpbBUqFtr6uuQyqyltNuaC-O9NbPFp5sA5M4ePkFugEQA1D5tVso4YBRMxAwo0nJEJxLEOGWh-PuxUxKFhYC7JVdvuKAURUzEhi1df4L6sPoK0KoIEc9_Xf7L7xGCx2gYr_41NMPNV2x_qrvRV4PygG9-2YeIPaVkFyft8fU0uXLpv8eY0p2Q7f9rMnsPl2-Jl9rgMc2Z4F3KRFoYqiHPmlJaYZRJTSZ3MhFTaKZU5LIx0lGccC2cUxtLIXPAizVihFZ-S--PduvFfPbad3fm-qYaXlnHKjdJCjC44uvKxZ4PO1k15SJsfC9SOvOzIy4687InXkLk7ZkpE_PdrBZJTyn8BJgBlvg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2303978447</pqid></control><display><type>article</type><title>Modeling and Decoupling the GPU Power Consumption for Cross-Domain DVFS</title><source>IEEE Electronic Library (IEL)</source><creator>Guerreiro, Joao ; Ilic, Aleksandar ; Roma, Nuno ; Tomas, Pedro</creator><creatorcontrib>Guerreiro, Joao ; Ilic, Aleksandar ; Roma, Nuno ; Tomas, Pedro</creatorcontrib><description>Dynamic voltage and frequency scaling (DVFS) is a popular technique to improve the energy-efficiency of high-performance computing systems. It allows placing the devices into lower performance states when the computational demands are lower, opening the possibility for significant power/energy savings. This work presents a GPU power consumption model, used to predict the GPU power consumption of any application at different frequency levels. To obtain this model, an estimation algorithm is proposed, relying on careful benchmarking of the GPU architecture. The model can estimate the contribution of twelve different GPU components (FP32-ADD/MUL/FMA, FP64-ADD/MUL/FMA, INT, SF, CF units, shared memory, L2-cache, and DRAM) to the GPU power consumption. Different model use cases are evaluated (fixed-frequency, DVFS, and scaling-factors), which can obtain both the total or the per-component GPU power consumption. A technique to export models to a distinct GPU from the one it was estimated on is also proposed. These approaches were extensively validated on five different GPUs from the three most recent microarchitectures with a set of 42 standard benchmarks, achieving very accurate predictions. In particular, the scaling-factor power model achieves an average prediction error of 3.5 percent (Titan Xp), 4.6 percent (GTX Titan X), 3.1 percent (GTX 980) and 2.4 percent (Tesla K40c).</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2917181</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Benchmark testing ; Computational modeling ; Computer architecture ; Decoupling ; DVFS ; Energy management ; Frequency-domain analysis ; GPGPU ; Graphics processing units ; Memory management ; Power consumption ; Power demand ; Power management ; power modeling ; Predictive models ; Scaling ; scaling-factors</subject><ispartof>IEEE transactions on parallel and distributed systems, 2019-11, Vol.30 (11), p.2494-2506</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-34ad90715c2f786ebb6ea60f6b4678f77bfed96f03b3edf97e5696c43dab2d873</citedby><cites>FETCH-LOGICAL-c293t-34ad90715c2f786ebb6ea60f6b4678f77bfed96f03b3edf97e5696c43dab2d873</cites><orcidid>0000-0001-8083-4432 ; 0000-0002-5102-4374 ; 0000-0003-2491-4977 ; 0000-0002-8594-3539</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8716300$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8716300$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guerreiro, Joao</creatorcontrib><creatorcontrib>Ilic, Aleksandar</creatorcontrib><creatorcontrib>Roma, Nuno</creatorcontrib><creatorcontrib>Tomas, Pedro</creatorcontrib><title>Modeling and Decoupling the GPU Power Consumption for Cross-Domain DVFS</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Dynamic voltage and frequency scaling (DVFS) is a popular technique to improve the energy-efficiency of high-performance computing systems. It allows placing the devices into lower performance states when the computational demands are lower, opening the possibility for significant power/energy savings. This work presents a GPU power consumption model, used to predict the GPU power consumption of any application at different frequency levels. To obtain this model, an estimation algorithm is proposed, relying on careful benchmarking of the GPU architecture. The model can estimate the contribution of twelve different GPU components (FP32-ADD/MUL/FMA, FP64-ADD/MUL/FMA, INT, SF, CF units, shared memory, L2-cache, and DRAM) to the GPU power consumption. Different model use cases are evaluated (fixed-frequency, DVFS, and scaling-factors), which can obtain both the total or the per-component GPU power consumption. A technique to export models to a distinct GPU from the one it was estimated on is also proposed. These approaches were extensively validated on five different GPUs from the three most recent microarchitectures with a set of 42 standard benchmarks, achieving very accurate predictions. In particular, the scaling-factor power model achieves an average prediction error of 3.5 percent (Titan Xp), 4.6 percent (GTX Titan X), 3.1 percent (GTX 980) and 2.4 percent (Tesla K40c).</description><subject>Algorithms</subject><subject>Benchmark testing</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Decoupling</subject><subject>DVFS</subject><subject>Energy management</subject><subject>Frequency-domain analysis</subject><subject>GPGPU</subject><subject>Graphics processing units</subject><subject>Memory management</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power management</subject><subject>power modeling</subject><subject>Predictive models</subject><subject>Scaling</subject><subject>scaling-factors</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLw0AQhRdRsFZ_gPgS8DlxZ3ezl0dpbBUqFtr6uuQyqyltNuaC-O9NbPFp5sA5M4ePkFugEQA1D5tVso4YBRMxAwo0nJEJxLEOGWh-PuxUxKFhYC7JVdvuKAURUzEhi1df4L6sPoK0KoIEc9_Xf7L7xGCx2gYr_41NMPNV2x_qrvRV4PygG9-2YeIPaVkFyft8fU0uXLpv8eY0p2Q7f9rMnsPl2-Jl9rgMc2Z4F3KRFoYqiHPmlJaYZRJTSZ3MhFTaKZU5LIx0lGccC2cUxtLIXPAizVihFZ-S--PduvFfPbad3fm-qYaXlnHKjdJCjC44uvKxZ4PO1k15SJsfC9SOvOzIy4687InXkLk7ZkpE_PdrBZJTyn8BJgBlvg</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Guerreiro, Joao</creator><creator>Ilic, Aleksandar</creator><creator>Roma, Nuno</creator><creator>Tomas, Pedro</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8083-4432</orcidid><orcidid>https://orcid.org/0000-0002-5102-4374</orcidid><orcidid>https://orcid.org/0000-0003-2491-4977</orcidid><orcidid>https://orcid.org/0000-0002-8594-3539</orcidid></search><sort><creationdate>20191101</creationdate><title>Modeling and Decoupling the GPU Power Consumption for Cross-Domain DVFS</title><author>Guerreiro, Joao ; Ilic, Aleksandar ; Roma, Nuno ; Tomas, Pedro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-34ad90715c2f786ebb6ea60f6b4678f77bfed96f03b3edf97e5696c43dab2d873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Benchmark testing</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Decoupling</topic><topic>DVFS</topic><topic>Energy management</topic><topic>Frequency-domain analysis</topic><topic>GPGPU</topic><topic>Graphics processing units</topic><topic>Memory management</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power management</topic><topic>power modeling</topic><topic>Predictive models</topic><topic>Scaling</topic><topic>scaling-factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guerreiro, Joao</creatorcontrib><creatorcontrib>Ilic, Aleksandar</creatorcontrib><creatorcontrib>Roma, Nuno</creatorcontrib><creatorcontrib>Tomas, Pedro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guerreiro, Joao</au><au>Ilic, Aleksandar</au><au>Roma, Nuno</au><au>Tomas, Pedro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling and Decoupling the GPU Power Consumption for Cross-Domain DVFS</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>30</volume><issue>11</issue><spage>2494</spage><epage>2506</epage><pages>2494-2506</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Dynamic voltage and frequency scaling (DVFS) is a popular technique to improve the energy-efficiency of high-performance computing systems. It allows placing the devices into lower performance states when the computational demands are lower, opening the possibility for significant power/energy savings. This work presents a GPU power consumption model, used to predict the GPU power consumption of any application at different frequency levels. To obtain this model, an estimation algorithm is proposed, relying on careful benchmarking of the GPU architecture. The model can estimate the contribution of twelve different GPU components (FP32-ADD/MUL/FMA, FP64-ADD/MUL/FMA, INT, SF, CF units, shared memory, L2-cache, and DRAM) to the GPU power consumption. Different model use cases are evaluated (fixed-frequency, DVFS, and scaling-factors), which can obtain both the total or the per-component GPU power consumption. A technique to export models to a distinct GPU from the one it was estimated on is also proposed. These approaches were extensively validated on five different GPUs from the three most recent microarchitectures with a set of 42 standard benchmarks, achieving very accurate predictions. In particular, the scaling-factor power model achieves an average prediction error of 3.5 percent (Titan Xp), 4.6 percent (GTX Titan X), 3.1 percent (GTX 980) and 2.4 percent (Tesla K40c).</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2917181</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-8083-4432</orcidid><orcidid>https://orcid.org/0000-0002-5102-4374</orcidid><orcidid>https://orcid.org/0000-0003-2491-4977</orcidid><orcidid>https://orcid.org/0000-0002-8594-3539</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2019-11, Vol.30 (11), p.2494-2506 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_ieee_primary_8716300 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Benchmark testing Computational modeling Computer architecture Decoupling DVFS Energy management Frequency-domain analysis GPGPU Graphics processing units Memory management Power consumption Power demand Power management power modeling Predictive models Scaling scaling-factors |
title | Modeling and Decoupling the GPU Power Consumption for Cross-Domain DVFS |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A05%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20and%20Decoupling%20the%20GPU%20Power%20Consumption%20for%20Cross-Domain%20DVFS&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Guerreiro,%20Joao&rft.date=2019-11-01&rft.volume=30&rft.issue=11&rft.spage=2494&rft.epage=2506&rft.pages=2494-2506&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2917181&rft_dat=%3Cproquest_RIE%3E2303978447%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2303978447&rft_id=info:pmid/&rft_ieee_id=8716300&rfr_iscdi=true |