Measuring the Two-Dimensional Temperature Profile of Carbon Fiber Reinforced Polymers During Drilling Using Distributed Fiber Sensing
The spatio-temporal evolution of the temperature induced over carbon fiber reinforced polymer (CFRP) laminates during drilling is monitored in real-time using a distributed optical fiber sensor based on optical frequency-domain reflectometry (OFDR). The proposed distributed measurement technique ena...
Gespeichert in:
Veröffentlicht in: | Journal of lightwave technology 2019-09, Vol.37 (18), p.4687-4696 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4696 |
---|---|
container_issue | 18 |
container_start_page | 4687 |
container_title | Journal of lightwave technology |
container_volume | 37 |
creator | Zhu, Pingyu Wang, Yetian Wang, Shuaibin Soto, Marcelo A. |
description | The spatio-temporal evolution of the temperature induced over carbon fiber reinforced polymer (CFRP) laminates during drilling is monitored in real-time using a distributed optical fiber sensor based on optical frequency-domain reflectometry (OFDR). The proposed distributed measurement technique enables the simultaneous monitoring of thousands independent points on a CFRP plate during machining, being of special interest to measure the internal temperature of a workpiece. Experimental results validate the use of distributed OFDR-based sensing for this novel application, demonstrating a precise reconstruction of the two-dimensional (2D) temperature profile around the drilled hole, with a 2 mm spatial resolution and a sampling rate of 23.8 Hz (corresponding to a measurement interval of 42 ms). The high spatial and temporal resolutions provided by OFDR sensing offer unique features for this application, allowing for an accurate identification of the temporal evolution and spatial distribution of the 2D temperature profile originated during drilling. By embedding the sensing optical fiber in the interface between CFRP laminates and metals, a full map of the internal (interlayer) temperature of the CFRP plate can be obtained, demonstrating a feature that cannot be obtained by any other sensing technology. The proposed method can constitute a relevant tool for the identification of potential high temperatures occurring during machining, which could affect the quality of the borehole, induce material defects, and compromise the safety of an entire composite structure in service. |
doi_str_mv | 10.1109/JLT.2019.2916914 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8713861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8713861</ieee_id><sourcerecordid>2293974661</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-526c601f879fae6137a335ff5596a4c9abf9f6db092dd18c163911e717d1b1203</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKf3gjcBrztzkrZpLmVzfjBRtF6XtD2ZGV0zkxbxB_i_7ax4lRN43-dwHkLOgc0AmLp6WOUzzkDNuIJUQXxAJpAkWcQ5iEMyYVKIKJM8PiYnIWwYgzjO5IR8P6IOvbftmnbvSPNPFy3sFttgXasbmuN2h153vUf67J2xDVJn6Fz70rV0aUv09AVta5yvsKbPrvnaog90MSIX3jbNfngLv18bOm_LvhuiY_d1v6ldn5Ijo5uAZ3_vlLwtb_L5XbR6ur2fX6-iSgjRRQlPq5SByaQyGlMQUguRGJMkKtVxpXRplEnrkile15BVkAoFgBJkDSVwJqbkcuTuvPvoMXTFxvV-ODQUnCuhZJwO1ClhY6ryLgSPpth5u9X-qwBW7GUXg-xiL7v4kz1ULsaKRcT_eCZBZAPwBx1BfEY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2293974661</pqid></control><display><type>article</type><title>Measuring the Two-Dimensional Temperature Profile of Carbon Fiber Reinforced Polymers During Drilling Using Distributed Fiber Sensing</title><source>IEEE/IET Electronic Library</source><creator>Zhu, Pingyu ; Wang, Yetian ; Wang, Shuaibin ; Soto, Marcelo A.</creator><creatorcontrib>Zhu, Pingyu ; Wang, Yetian ; Wang, Shuaibin ; Soto, Marcelo A.</creatorcontrib><description>The spatio-temporal evolution of the temperature induced over carbon fiber reinforced polymer (CFRP) laminates during drilling is monitored in real-time using a distributed optical fiber sensor based on optical frequency-domain reflectometry (OFDR). The proposed distributed measurement technique enables the simultaneous monitoring of thousands independent points on a CFRP plate during machining, being of special interest to measure the internal temperature of a workpiece. Experimental results validate the use of distributed OFDR-based sensing for this novel application, demonstrating a precise reconstruction of the two-dimensional (2D) temperature profile around the drilled hole, with a 2 mm spatial resolution and a sampling rate of 23.8 Hz (corresponding to a measurement interval of 42 ms). The high spatial and temporal resolutions provided by OFDR sensing offer unique features for this application, allowing for an accurate identification of the temporal evolution and spatial distribution of the 2D temperature profile originated during drilling. By embedding the sensing optical fiber in the interface between CFRP laminates and metals, a full map of the internal (interlayer) temperature of the CFRP plate can be obtained, demonstrating a feature that cannot be obtained by any other sensing technology. The proposed method can constitute a relevant tool for the identification of potential high temperatures occurring during machining, which could affect the quality of the borehole, induce material defects, and compromise the safety of an entire composite structure in service.</description><identifier>ISSN: 0733-8724</identifier><identifier>EISSN: 1558-2213</identifier><identifier>DOI: 10.1109/JLT.2019.2916914</identifier><identifier>CODEN: JLTEDG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Boreholes ; Carbon fiber reinforced plastics ; Carbon fiber reinforced polymer (CFRP) ; Carbon fiber reinforcement ; Composite structures ; Detection ; distributed optical fiber sensors ; Drilling ; Evolution ; fiber optics ; Fiber reinforced polymers ; Interlayers ; Laminates ; Machining ; Measurement techniques ; Optical fiber sensors ; Optical fibers ; Optical frequency ; optical frequency-domain reflectometry (OFDR) ; Plates (structural members) ; Rayleigh scattering ; Reflectometry ; Spatial distribution ; Spatial resolution ; Temperature ; Temperature measurement ; Temperature profiles ; Temperature sensors ; Workpieces</subject><ispartof>Journal of lightwave technology, 2019-09, Vol.37 (18), p.4687-4696</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-526c601f879fae6137a335ff5596a4c9abf9f6db092dd18c163911e717d1b1203</citedby><cites>FETCH-LOGICAL-c333t-526c601f879fae6137a335ff5596a4c9abf9f6db092dd18c163911e717d1b1203</cites><orcidid>0000-0001-6338-0109 ; 0000-0002-2140-2012</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8713861$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids></links><search><creatorcontrib>Zhu, Pingyu</creatorcontrib><creatorcontrib>Wang, Yetian</creatorcontrib><creatorcontrib>Wang, Shuaibin</creatorcontrib><creatorcontrib>Soto, Marcelo A.</creatorcontrib><title>Measuring the Two-Dimensional Temperature Profile of Carbon Fiber Reinforced Polymers During Drilling Using Distributed Fiber Sensing</title><title>Journal of lightwave technology</title><addtitle>JLT</addtitle><description>The spatio-temporal evolution of the temperature induced over carbon fiber reinforced polymer (CFRP) laminates during drilling is monitored in real-time using a distributed optical fiber sensor based on optical frequency-domain reflectometry (OFDR). The proposed distributed measurement technique enables the simultaneous monitoring of thousands independent points on a CFRP plate during machining, being of special interest to measure the internal temperature of a workpiece. Experimental results validate the use of distributed OFDR-based sensing for this novel application, demonstrating a precise reconstruction of the two-dimensional (2D) temperature profile around the drilled hole, with a 2 mm spatial resolution and a sampling rate of 23.8 Hz (corresponding to a measurement interval of 42 ms). The high spatial and temporal resolutions provided by OFDR sensing offer unique features for this application, allowing for an accurate identification of the temporal evolution and spatial distribution of the 2D temperature profile originated during drilling. By embedding the sensing optical fiber in the interface between CFRP laminates and metals, a full map of the internal (interlayer) temperature of the CFRP plate can be obtained, demonstrating a feature that cannot be obtained by any other sensing technology. The proposed method can constitute a relevant tool for the identification of potential high temperatures occurring during machining, which could affect the quality of the borehole, induce material defects, and compromise the safety of an entire composite structure in service.</description><subject>Boreholes</subject><subject>Carbon fiber reinforced plastics</subject><subject>Carbon fiber reinforced polymer (CFRP)</subject><subject>Carbon fiber reinforcement</subject><subject>Composite structures</subject><subject>Detection</subject><subject>distributed optical fiber sensors</subject><subject>Drilling</subject><subject>Evolution</subject><subject>fiber optics</subject><subject>Fiber reinforced polymers</subject><subject>Interlayers</subject><subject>Laminates</subject><subject>Machining</subject><subject>Measurement techniques</subject><subject>Optical fiber sensors</subject><subject>Optical fibers</subject><subject>Optical frequency</subject><subject>optical frequency-domain reflectometry (OFDR)</subject><subject>Plates (structural members)</subject><subject>Rayleigh scattering</subject><subject>Reflectometry</subject><subject>Spatial distribution</subject><subject>Spatial resolution</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>Temperature profiles</subject><subject>Temperature sensors</subject><subject>Workpieces</subject><issn>0733-8724</issn><issn>1558-2213</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKf3gjcBrztzkrZpLmVzfjBRtF6XtD2ZGV0zkxbxB_i_7ax4lRN43-dwHkLOgc0AmLp6WOUzzkDNuIJUQXxAJpAkWcQ5iEMyYVKIKJM8PiYnIWwYgzjO5IR8P6IOvbftmnbvSPNPFy3sFttgXasbmuN2h153vUf67J2xDVJn6Fz70rV0aUv09AVta5yvsKbPrvnaog90MSIX3jbNfngLv18bOm_LvhuiY_d1v6ldn5Ijo5uAZ3_vlLwtb_L5XbR6ur2fX6-iSgjRRQlPq5SByaQyGlMQUguRGJMkKtVxpXRplEnrkile15BVkAoFgBJkDSVwJqbkcuTuvPvoMXTFxvV-ODQUnCuhZJwO1ClhY6ryLgSPpth5u9X-qwBW7GUXg-xiL7v4kz1ULsaKRcT_eCZBZAPwBx1BfEY</recordid><startdate>20190915</startdate><enddate>20190915</enddate><creator>Zhu, Pingyu</creator><creator>Wang, Yetian</creator><creator>Wang, Shuaibin</creator><creator>Soto, Marcelo A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-6338-0109</orcidid><orcidid>https://orcid.org/0000-0002-2140-2012</orcidid></search><sort><creationdate>20190915</creationdate><title>Measuring the Two-Dimensional Temperature Profile of Carbon Fiber Reinforced Polymers During Drilling Using Distributed Fiber Sensing</title><author>Zhu, Pingyu ; Wang, Yetian ; Wang, Shuaibin ; Soto, Marcelo A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-526c601f879fae6137a335ff5596a4c9abf9f6db092dd18c163911e717d1b1203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Boreholes</topic><topic>Carbon fiber reinforced plastics</topic><topic>Carbon fiber reinforced polymer (CFRP)</topic><topic>Carbon fiber reinforcement</topic><topic>Composite structures</topic><topic>Detection</topic><topic>distributed optical fiber sensors</topic><topic>Drilling</topic><topic>Evolution</topic><topic>fiber optics</topic><topic>Fiber reinforced polymers</topic><topic>Interlayers</topic><topic>Laminates</topic><topic>Machining</topic><topic>Measurement techniques</topic><topic>Optical fiber sensors</topic><topic>Optical fibers</topic><topic>Optical frequency</topic><topic>optical frequency-domain reflectometry (OFDR)</topic><topic>Plates (structural members)</topic><topic>Rayleigh scattering</topic><topic>Reflectometry</topic><topic>Spatial distribution</topic><topic>Spatial resolution</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>Temperature profiles</topic><topic>Temperature sensors</topic><topic>Workpieces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Pingyu</creatorcontrib><creatorcontrib>Wang, Yetian</creatorcontrib><creatorcontrib>Wang, Shuaibin</creatorcontrib><creatorcontrib>Soto, Marcelo A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of lightwave technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhu, Pingyu</au><au>Wang, Yetian</au><au>Wang, Shuaibin</au><au>Soto, Marcelo A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measuring the Two-Dimensional Temperature Profile of Carbon Fiber Reinforced Polymers During Drilling Using Distributed Fiber Sensing</atitle><jtitle>Journal of lightwave technology</jtitle><stitle>JLT</stitle><date>2019-09-15</date><risdate>2019</risdate><volume>37</volume><issue>18</issue><spage>4687</spage><epage>4696</epage><pages>4687-4696</pages><issn>0733-8724</issn><eissn>1558-2213</eissn><coden>JLTEDG</coden><abstract>The spatio-temporal evolution of the temperature induced over carbon fiber reinforced polymer (CFRP) laminates during drilling is monitored in real-time using a distributed optical fiber sensor based on optical frequency-domain reflectometry (OFDR). The proposed distributed measurement technique enables the simultaneous monitoring of thousands independent points on a CFRP plate during machining, being of special interest to measure the internal temperature of a workpiece. Experimental results validate the use of distributed OFDR-based sensing for this novel application, demonstrating a precise reconstruction of the two-dimensional (2D) temperature profile around the drilled hole, with a 2 mm spatial resolution and a sampling rate of 23.8 Hz (corresponding to a measurement interval of 42 ms). The high spatial and temporal resolutions provided by OFDR sensing offer unique features for this application, allowing for an accurate identification of the temporal evolution and spatial distribution of the 2D temperature profile originated during drilling. By embedding the sensing optical fiber in the interface between CFRP laminates and metals, a full map of the internal (interlayer) temperature of the CFRP plate can be obtained, demonstrating a feature that cannot be obtained by any other sensing technology. The proposed method can constitute a relevant tool for the identification of potential high temperatures occurring during machining, which could affect the quality of the borehole, induce material defects, and compromise the safety of an entire composite structure in service.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JLT.2019.2916914</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-6338-0109</orcidid><orcidid>https://orcid.org/0000-0002-2140-2012</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0733-8724 |
ispartof | Journal of lightwave technology, 2019-09, Vol.37 (18), p.4687-4696 |
issn | 0733-8724 1558-2213 |
language | eng |
recordid | cdi_ieee_primary_8713861 |
source | IEEE/IET Electronic Library |
subjects | Boreholes Carbon fiber reinforced plastics Carbon fiber reinforced polymer (CFRP) Carbon fiber reinforcement Composite structures Detection distributed optical fiber sensors Drilling Evolution fiber optics Fiber reinforced polymers Interlayers Laminates Machining Measurement techniques Optical fiber sensors Optical fibers Optical frequency optical frequency-domain reflectometry (OFDR) Plates (structural members) Rayleigh scattering Reflectometry Spatial distribution Spatial resolution Temperature Temperature measurement Temperature profiles Temperature sensors Workpieces |
title | Measuring the Two-Dimensional Temperature Profile of Carbon Fiber Reinforced Polymers During Drilling Using Distributed Fiber Sensing |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A19%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measuring%20the%20Two-Dimensional%20Temperature%20Profile%20of%20Carbon%20Fiber%20Reinforced%20Polymers%20During%20Drilling%20Using%20Distributed%20Fiber%20Sensing&rft.jtitle=Journal%20of%20lightwave%20technology&rft.au=Zhu,%20Pingyu&rft.date=2019-09-15&rft.volume=37&rft.issue=18&rft.spage=4687&rft.epage=4696&rft.pages=4687-4696&rft.issn=0733-8724&rft.eissn=1558-2213&rft.coden=JLTEDG&rft_id=info:doi/10.1109/JLT.2019.2916914&rft_dat=%3Cproquest_ieee_%3E2293974661%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2293974661&rft_id=info:pmid/&rft_ieee_id=8713861&rfr_iscdi=true |