Detent Force, Thrust, and Normal Force of the Short-Primary Double-Sided Permanent Magnet Linear Synchronous Motor With Slot-Shift Structure

Phase-shift or pole-shift method can reduce the detent force of the double-sided permanent magnet linear synchronous motor (DS-PMLSM) dramatically. However, this method causes a decrease in thrust and an increase in normal force simultaneously. To overcome this drawback, a novel slot-shift structure...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on energy conversion 2019-09, Vol.34 (3), p.1411-1421
Hauptverfasser: Huang, XuZhen, Ji, TianPeng, Li, LiYi, Zhou, Bo, Zhang, ZhuoRan, Gerada, David, Gerada, Chris
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1421
container_issue 3
container_start_page 1411
container_title IEEE transactions on energy conversion
container_volume 34
creator Huang, XuZhen
Ji, TianPeng
Li, LiYi
Zhou, Bo
Zhang, ZhuoRan
Gerada, David
Gerada, Chris
description Phase-shift or pole-shift method can reduce the detent force of the double-sided permanent magnet linear synchronous motor (DS-PMLSM) dramatically. However, this method causes a decrease in thrust and an increase in normal force simultaneously. To overcome this drawback, a novel slot-shift structure whose slots on the two sides of the primary component are staggered by an optimal distance is proposed in this paper. The models of the detent force including the end force and cogging force is established theoretically, and then verified by finite element analysis. The windings in the upper primary and the lower primary are arranged differently to improve the average thrust. The thrust characteristics of the DS-PMLSM under different shifted distances are analyzed and compared in detail. Furthermore, the primary component employing two kinds of core laminations is proposed to reduce both the dc component and ripple of the normal force. Finally, a DS-PMLSM prototype is tested, and the experimental results are compared with the analytical results to verify the effectiveness of the theoretical and simulation research.
doi_str_mv 10.1109/TEC.2019.2915821
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8710284</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8710284</ieee_id><sourcerecordid>2278399993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-dcb51e5eb7b2a353d9bff6cec4dcaf98aaf5f3e6a27be650038cf595fb433d7f3</originalsourceid><addsrcrecordid>eNo9kEtPwzAQhC0EEqVwR-JiiWtT_Igb-4j6AKQWKqWIY-Q4a5KqjYvjHPof-NGkSsVe9rAzs5oPoXtKxpQS9bSZT8eMUDVmigrJ6AUaUCFkRIhQl2hApBSRVBN1jW6aZksIjQWjA_Q7gwB1wAvnDYzwpvRtE0ZY1wV-d36vd_0FO4tDCTgtnQ_R2ld77Y945tp8B1FaFVDgNXTy-pS10t81BLysatAep8falN7Vrm3wygXn8VcVSpzuXIjSsrIBp8G3JrQebtGV1bsG7s57iD4X8830NVp-vLxNn5eR6cqFqDC5oCAgT3KmueCFyq2dGDBxYbRVUmsrLIeJZkkOE0EIl8YKJWwec14klg_RY5978O6nhSZkW9f6unuZMZZIrrrhnYr0KuNd03iw2aHvnVGSnZhnHfPsxDw7M-8sD72lAoB_uUwoYTLmf-jOf9s</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2278399993</pqid></control><display><type>article</type><title>Detent Force, Thrust, and Normal Force of the Short-Primary Double-Sided Permanent Magnet Linear Synchronous Motor With Slot-Shift Structure</title><source>IEEE Electronic Library (IEL)</source><creator>Huang, XuZhen ; Ji, TianPeng ; Li, LiYi ; Zhou, Bo ; Zhang, ZhuoRan ; Gerada, David ; Gerada, Chris</creator><creatorcontrib>Huang, XuZhen ; Ji, TianPeng ; Li, LiYi ; Zhou, Bo ; Zhang, ZhuoRan ; Gerada, David ; Gerada, Chris</creatorcontrib><description>Phase-shift or pole-shift method can reduce the detent force of the double-sided permanent magnet linear synchronous motor (DS-PMLSM) dramatically. However, this method causes a decrease in thrust and an increase in normal force simultaneously. To overcome this drawback, a novel slot-shift structure whose slots on the two sides of the primary component are staggered by an optimal distance is proposed in this paper. The models of the detent force including the end force and cogging force is established theoretically, and then verified by finite element analysis. The windings in the upper primary and the lower primary are arranged differently to improve the average thrust. The thrust characteristics of the DS-PMLSM under different shifted distances are analyzed and compared in detail. Furthermore, the primary component employing two kinds of core laminations is proposed to reduce both the dc component and ripple of the normal force. Finally, a DS-PMLSM prototype is tested, and the experimental results are compared with the analytical results to verify the effectiveness of the theoretical and simulation research.</description><identifier>ISSN: 0885-8969</identifier><identifier>EISSN: 1558-0059</identifier><identifier>DOI: 10.1109/TEC.2019.2915821</identifier><identifier>CODEN: ITCNE4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Back electromotive force (EMF) ; Cogging ; cogging force ; Coils (windings) ; Computer simulation ; detent force ; double-sided ; end force ; Finite element method ; Force ; Forging ; Harmonic analysis ; Lamination ; linear motor ; normal force ; permanent magnet motor ; Permanent magnet motors ; Permanent magnets ; Simulation ; Synchronous motors ; Thrust ; Windings</subject><ispartof>IEEE transactions on energy conversion, 2019-09, Vol.34 (3), p.1411-1421</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-dcb51e5eb7b2a353d9bff6cec4dcaf98aaf5f3e6a27be650038cf595fb433d7f3</citedby><cites>FETCH-LOGICAL-c291t-dcb51e5eb7b2a353d9bff6cec4dcaf98aaf5f3e6a27be650038cf595fb433d7f3</cites><orcidid>0000-0001-9433-9328 ; 0000-0002-8280-1308 ; 0000-0003-3602-2976 ; 0000-0002-6382-2891 ; 0000-0003-4707-4480 ; 0000-0003-1395-5415</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8710284$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8710284$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, XuZhen</creatorcontrib><creatorcontrib>Ji, TianPeng</creatorcontrib><creatorcontrib>Li, LiYi</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Zhang, ZhuoRan</creatorcontrib><creatorcontrib>Gerada, David</creatorcontrib><creatorcontrib>Gerada, Chris</creatorcontrib><title>Detent Force, Thrust, and Normal Force of the Short-Primary Double-Sided Permanent Magnet Linear Synchronous Motor With Slot-Shift Structure</title><title>IEEE transactions on energy conversion</title><addtitle>TEC</addtitle><description>Phase-shift or pole-shift method can reduce the detent force of the double-sided permanent magnet linear synchronous motor (DS-PMLSM) dramatically. However, this method causes a decrease in thrust and an increase in normal force simultaneously. To overcome this drawback, a novel slot-shift structure whose slots on the two sides of the primary component are staggered by an optimal distance is proposed in this paper. The models of the detent force including the end force and cogging force is established theoretically, and then verified by finite element analysis. The windings in the upper primary and the lower primary are arranged differently to improve the average thrust. The thrust characteristics of the DS-PMLSM under different shifted distances are analyzed and compared in detail. Furthermore, the primary component employing two kinds of core laminations is proposed to reduce both the dc component and ripple of the normal force. Finally, a DS-PMLSM prototype is tested, and the experimental results are compared with the analytical results to verify the effectiveness of the theoretical and simulation research.</description><subject>Back electromotive force (EMF)</subject><subject>Cogging</subject><subject>cogging force</subject><subject>Coils (windings)</subject><subject>Computer simulation</subject><subject>detent force</subject><subject>double-sided</subject><subject>end force</subject><subject>Finite element method</subject><subject>Force</subject><subject>Forging</subject><subject>Harmonic analysis</subject><subject>Lamination</subject><subject>linear motor</subject><subject>normal force</subject><subject>permanent magnet motor</subject><subject>Permanent magnet motors</subject><subject>Permanent magnets</subject><subject>Simulation</subject><subject>Synchronous motors</subject><subject>Thrust</subject><subject>Windings</subject><issn>0885-8969</issn><issn>1558-0059</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtPwzAQhC0EEqVwR-JiiWtT_Igb-4j6AKQWKqWIY-Q4a5KqjYvjHPof-NGkSsVe9rAzs5oPoXtKxpQS9bSZT8eMUDVmigrJ6AUaUCFkRIhQl2hApBSRVBN1jW6aZksIjQWjA_Q7gwB1wAvnDYzwpvRtE0ZY1wV-d36vd_0FO4tDCTgtnQ_R2ld77Y945tp8B1FaFVDgNXTy-pS10t81BLysatAep8falN7Vrm3wygXn8VcVSpzuXIjSsrIBp8G3JrQebtGV1bsG7s57iD4X8830NVp-vLxNn5eR6cqFqDC5oCAgT3KmueCFyq2dGDBxYbRVUmsrLIeJZkkOE0EIl8YKJWwec14klg_RY5978O6nhSZkW9f6unuZMZZIrrrhnYr0KuNd03iw2aHvnVGSnZhnHfPsxDw7M-8sD72lAoB_uUwoYTLmf-jOf9s</recordid><startdate>201909</startdate><enddate>201909</enddate><creator>Huang, XuZhen</creator><creator>Ji, TianPeng</creator><creator>Li, LiYi</creator><creator>Zhou, Bo</creator><creator>Zhang, ZhuoRan</creator><creator>Gerada, David</creator><creator>Gerada, Chris</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-9433-9328</orcidid><orcidid>https://orcid.org/0000-0002-8280-1308</orcidid><orcidid>https://orcid.org/0000-0003-3602-2976</orcidid><orcidid>https://orcid.org/0000-0002-6382-2891</orcidid><orcidid>https://orcid.org/0000-0003-4707-4480</orcidid><orcidid>https://orcid.org/0000-0003-1395-5415</orcidid></search><sort><creationdate>201909</creationdate><title>Detent Force, Thrust, and Normal Force of the Short-Primary Double-Sided Permanent Magnet Linear Synchronous Motor With Slot-Shift Structure</title><author>Huang, XuZhen ; Ji, TianPeng ; Li, LiYi ; Zhou, Bo ; Zhang, ZhuoRan ; Gerada, David ; Gerada, Chris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-dcb51e5eb7b2a353d9bff6cec4dcaf98aaf5f3e6a27be650038cf595fb433d7f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Back electromotive force (EMF)</topic><topic>Cogging</topic><topic>cogging force</topic><topic>Coils (windings)</topic><topic>Computer simulation</topic><topic>detent force</topic><topic>double-sided</topic><topic>end force</topic><topic>Finite element method</topic><topic>Force</topic><topic>Forging</topic><topic>Harmonic analysis</topic><topic>Lamination</topic><topic>linear motor</topic><topic>normal force</topic><topic>permanent magnet motor</topic><topic>Permanent magnet motors</topic><topic>Permanent magnets</topic><topic>Simulation</topic><topic>Synchronous motors</topic><topic>Thrust</topic><topic>Windings</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, XuZhen</creatorcontrib><creatorcontrib>Ji, TianPeng</creatorcontrib><creatorcontrib>Li, LiYi</creatorcontrib><creatorcontrib>Zhou, Bo</creatorcontrib><creatorcontrib>Zhang, ZhuoRan</creatorcontrib><creatorcontrib>Gerada, David</creatorcontrib><creatorcontrib>Gerada, Chris</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on energy conversion</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, XuZhen</au><au>Ji, TianPeng</au><au>Li, LiYi</au><au>Zhou, Bo</au><au>Zhang, ZhuoRan</au><au>Gerada, David</au><au>Gerada, Chris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detent Force, Thrust, and Normal Force of the Short-Primary Double-Sided Permanent Magnet Linear Synchronous Motor With Slot-Shift Structure</atitle><jtitle>IEEE transactions on energy conversion</jtitle><stitle>TEC</stitle><date>2019-09</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>1411</spage><epage>1421</epage><pages>1411-1421</pages><issn>0885-8969</issn><eissn>1558-0059</eissn><coden>ITCNE4</coden><abstract>Phase-shift or pole-shift method can reduce the detent force of the double-sided permanent magnet linear synchronous motor (DS-PMLSM) dramatically. However, this method causes a decrease in thrust and an increase in normal force simultaneously. To overcome this drawback, a novel slot-shift structure whose slots on the two sides of the primary component are staggered by an optimal distance is proposed in this paper. The models of the detent force including the end force and cogging force is established theoretically, and then verified by finite element analysis. The windings in the upper primary and the lower primary are arranged differently to improve the average thrust. The thrust characteristics of the DS-PMLSM under different shifted distances are analyzed and compared in detail. Furthermore, the primary component employing two kinds of core laminations is proposed to reduce both the dc component and ripple of the normal force. Finally, a DS-PMLSM prototype is tested, and the experimental results are compared with the analytical results to verify the effectiveness of the theoretical and simulation research.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEC.2019.2915821</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9433-9328</orcidid><orcidid>https://orcid.org/0000-0002-8280-1308</orcidid><orcidid>https://orcid.org/0000-0003-3602-2976</orcidid><orcidid>https://orcid.org/0000-0002-6382-2891</orcidid><orcidid>https://orcid.org/0000-0003-4707-4480</orcidid><orcidid>https://orcid.org/0000-0003-1395-5415</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8969
ispartof IEEE transactions on energy conversion, 2019-09, Vol.34 (3), p.1411-1421
issn 0885-8969
1558-0059
language eng
recordid cdi_ieee_primary_8710284
source IEEE Electronic Library (IEL)
subjects Back electromotive force (EMF)
Cogging
cogging force
Coils (windings)
Computer simulation
detent force
double-sided
end force
Finite element method
Force
Forging
Harmonic analysis
Lamination
linear motor
normal force
permanent magnet motor
Permanent magnet motors
Permanent magnets
Simulation
Synchronous motors
Thrust
Windings
title Detent Force, Thrust, and Normal Force of the Short-Primary Double-Sided Permanent Magnet Linear Synchronous Motor With Slot-Shift Structure
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T14%3A56%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detent%20Force,%20Thrust,%20and%20Normal%20Force%20of%20the%20Short-Primary%20Double-Sided%20Permanent%20Magnet%20Linear%20Synchronous%20Motor%20With%20Slot-Shift%20Structure&rft.jtitle=IEEE%20transactions%20on%20energy%20conversion&rft.au=Huang,%20XuZhen&rft.date=2019-09&rft.volume=34&rft.issue=3&rft.spage=1411&rft.epage=1421&rft.pages=1411-1421&rft.issn=0885-8969&rft.eissn=1558-0059&rft.coden=ITCNE4&rft_id=info:doi/10.1109/TEC.2019.2915821&rft_dat=%3Cproquest_RIE%3E2278399993%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2278399993&rft_id=info:pmid/&rft_ieee_id=8710284&rfr_iscdi=true