Nonlinear traffic modeling of VBR MPEG-2 video sources
A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1321 vol.3 |
---|---|
container_issue | |
container_start_page | 1318 |
container_title | |
container_volume | 3 |
creator | Doulamis, A.D. Doulamis, N.D. Kollias, S.D. |
description | A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neural network with a tapped delay line (TDL) filter. A novel algorithm is also introduced, which handles the significant effect of the correlation among the I, P and B frames on the estimation of network resources. Furthermore, a new mechanism is proposed to improve the modeling accuracy, especially at high bit rates, based on a generalized regression neural network. Experimental studies and computer simulations illustrate the efficiency and robustness of the proposed model as predictor of the network resources compared to conventional models. |
doi_str_mv | 10.1109/ICME.2000.871009 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_871009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>871009</ieee_id><sourcerecordid>871009</sourcerecordid><originalsourceid>FETCH-ieee_primary_8710093</originalsourceid><addsrcrecordid>eNpjYJAwNNAzNDSw1Pd09nXVMzIwMNCzMDc0MLBkZuAyMLcwMDYzNTYz4WDgLS7OAkoamBqZG5kYcTKY-eXn5WTmpSYWKZQUJaalZSYr5OanpAKF0hXy0xTCnIIUfANc3XWNFMoyU1LzFYrzS4uSU4t5GFjTEnOKU3mhNDeDlJtriLOHbmZqamp8QVFmbmJRZTzEBcZ4JQE7nzMb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear traffic modeling of VBR MPEG-2 video sources</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Doulamis, A.D. ; Doulamis, N.D. ; Kollias, S.D.</creator><creatorcontrib>Doulamis, A.D. ; Doulamis, N.D. ; Kollias, S.D.</creatorcontrib><description>A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neural network with a tapped delay line (TDL) filter. A novel algorithm is also introduced, which handles the significant effect of the correlation among the I, P and B frames on the estimation of network resources. Furthermore, a new mechanism is proposed to improve the modeling accuracy, especially at high bit rates, based on a generalized regression neural network. Experimental studies and computer simulations illustrate the efficiency and robustness of the proposed model as predictor of the network resources compared to conventional models.</description><identifier>ISBN: 0780365364</identifier><identifier>ISBN: 9780780365360</identifier><identifier>DOI: 10.1109/ICME.2000.871009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Bit rate ; Delay lines ; Feedforward neural networks ; Filters ; Neural networks ; Predictive models ; Telecommunication traffic ; Traffic control ; Video sequences</subject><ispartof>2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), 2000, Vol.3, p.1318-1321 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/871009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/871009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doulamis, A.D.</creatorcontrib><creatorcontrib>Doulamis, N.D.</creatorcontrib><creatorcontrib>Kollias, S.D.</creatorcontrib><title>Nonlinear traffic modeling of VBR MPEG-2 video sources</title><title>2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532)</title><addtitle>ICME</addtitle><description>A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neural network with a tapped delay line (TDL) filter. A novel algorithm is also introduced, which handles the significant effect of the correlation among the I, P and B frames on the estimation of network resources. Furthermore, a new mechanism is proposed to improve the modeling accuracy, especially at high bit rates, based on a generalized regression neural network. Experimental studies and computer simulations illustrate the efficiency and robustness of the proposed model as predictor of the network resources compared to conventional models.</description><subject>Aggregates</subject><subject>Bit rate</subject><subject>Delay lines</subject><subject>Feedforward neural networks</subject><subject>Filters</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><subject>Video sequences</subject><isbn>0780365364</isbn><isbn>9780780365360</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjYJAwNNAzNDSw1Pd09nXVMzIwMNCzMDc0MLBkZuAyMLcwMDYzNTYz4WDgLS7OAkoamBqZG5kYcTKY-eXn5WTmpSYWKZQUJaalZSYr5OanpAKF0hXy0xTCnIIUfANc3XWNFMoyU1LzFYrzS4uSU4t5GFjTEnOKU3mhNDeDlJtriLOHbmZqamp8QVFmbmJRZTzEBcZ4JQE7nzMb</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Doulamis, A.D.</creator><creator>Doulamis, N.D.</creator><creator>Kollias, S.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Nonlinear traffic modeling of VBR MPEG-2 video sources</title><author>Doulamis, A.D. ; Doulamis, N.D. ; Kollias, S.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8710093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aggregates</topic><topic>Bit rate</topic><topic>Delay lines</topic><topic>Feedforward neural networks</topic><topic>Filters</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Doulamis, A.D.</creatorcontrib><creatorcontrib>Doulamis, N.D.</creatorcontrib><creatorcontrib>Kollias, S.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doulamis, A.D.</au><au>Doulamis, N.D.</au><au>Kollias, S.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear traffic modeling of VBR MPEG-2 video sources</atitle><btitle>2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532)</btitle><stitle>ICME</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>1318</spage><epage>1321 vol.3</epage><pages>1318-1321 vol.3</pages><isbn>0780365364</isbn><isbn>9780780365360</isbn><abstract>A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neural network with a tapped delay line (TDL) filter. A novel algorithm is also introduced, which handles the significant effect of the correlation among the I, P and B frames on the estimation of network resources. Furthermore, a new mechanism is proposed to improve the modeling accuracy, especially at high bit rates, based on a generalized regression neural network. Experimental studies and computer simulations illustrate the efficiency and robustness of the proposed model as predictor of the network resources compared to conventional models.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2000.871009</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780365364 |
ispartof | 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), 2000, Vol.3, p.1318-1321 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_871009 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aggregates Bit rate Delay lines Feedforward neural networks Filters Neural networks Predictive models Telecommunication traffic Traffic control Video sequences |
title | Nonlinear traffic modeling of VBR MPEG-2 video sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20traffic%20modeling%20of%20VBR%20MPEG-2%20video%20sources&rft.btitle=2000%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo.%20ICME2000.%20Proceedings.%20Latest%20Advances%20in%20the%20Fast%20Changing%20World%20of%20Multimedia%20(Cat.%20No.00TH8532)&rft.au=Doulamis,%20A.D.&rft.date=2000&rft.volume=3&rft.spage=1318&rft.epage=1321%20vol.3&rft.pages=1318-1321%20vol.3&rft.isbn=0780365364&rft.isbn_list=9780780365360&rft_id=info:doi/10.1109/ICME.2000.871009&rft_dat=%3Cieee_6IE%3E871009%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=871009&rfr_iscdi=true |