Nonlinear traffic modeling of VBR MPEG-2 video sources

A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Doulamis, A.D., Doulamis, N.D., Kollias, S.D.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1321 vol.3
container_issue
container_start_page 1318
container_title
container_volume 3
creator Doulamis, A.D.
Doulamis, N.D.
Kollias, S.D.
description A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neural network with a tapped delay line (TDL) filter. A novel algorithm is also introduced, which handles the significant effect of the correlation among the I, P and B frames on the estimation of network resources. Furthermore, a new mechanism is proposed to improve the modeling accuracy, especially at high bit rates, based on a generalized regression neural network. Experimental studies and computer simulations illustrate the efficiency and robustness of the proposed model as predictor of the network resources compared to conventional models.
doi_str_mv 10.1109/ICME.2000.871009
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_871009</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>871009</ieee_id><sourcerecordid>871009</sourcerecordid><originalsourceid>FETCH-ieee_primary_8710093</originalsourceid><addsrcrecordid>eNpjYJAwNNAzNDSw1Pd09nXVMzIwMNCzMDc0MLBkZuAyMLcwMDYzNTYz4WDgLS7OAkoamBqZG5kYcTKY-eXn5WTmpSYWKZQUJaalZSYr5OanpAKF0hXy0xTCnIIUfANc3XWNFMoyU1LzFYrzS4uSU4t5GFjTEnOKU3mhNDeDlJtriLOHbmZqamp8QVFmbmJRZTzEBcZ4JQE7nzMb</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nonlinear traffic modeling of VBR MPEG-2 video sources</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Doulamis, A.D. ; Doulamis, N.D. ; Kollias, S.D.</creator><creatorcontrib>Doulamis, A.D. ; Doulamis, N.D. ; Kollias, S.D.</creatorcontrib><description>A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neural network with a tapped delay line (TDL) filter. A novel algorithm is also introduced, which handles the significant effect of the correlation among the I, P and B frames on the estimation of network resources. Furthermore, a new mechanism is proposed to improve the modeling accuracy, especially at high bit rates, based on a generalized regression neural network. Experimental studies and computer simulations illustrate the efficiency and robustness of the proposed model as predictor of the network resources compared to conventional models.</description><identifier>ISBN: 0780365364</identifier><identifier>ISBN: 9780780365360</identifier><identifier>DOI: 10.1109/ICME.2000.871009</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Bit rate ; Delay lines ; Feedforward neural networks ; Filters ; Neural networks ; Predictive models ; Telecommunication traffic ; Traffic control ; Video sequences</subject><ispartof>2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), 2000, Vol.3, p.1318-1321 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/871009$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,4051,4052,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/871009$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Doulamis, A.D.</creatorcontrib><creatorcontrib>Doulamis, N.D.</creatorcontrib><creatorcontrib>Kollias, S.D.</creatorcontrib><title>Nonlinear traffic modeling of VBR MPEG-2 video sources</title><title>2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532)</title><addtitle>ICME</addtitle><description>A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neural network with a tapped delay line (TDL) filter. A novel algorithm is also introduced, which handles the significant effect of the correlation among the I, P and B frames on the estimation of network resources. Furthermore, a new mechanism is proposed to improve the modeling accuracy, especially at high bit rates, based on a generalized regression neural network. Experimental studies and computer simulations illustrate the efficiency and robustness of the proposed model as predictor of the network resources compared to conventional models.</description><subject>Aggregates</subject><subject>Bit rate</subject><subject>Delay lines</subject><subject>Feedforward neural networks</subject><subject>Filters</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Telecommunication traffic</subject><subject>Traffic control</subject><subject>Video sequences</subject><isbn>0780365364</isbn><isbn>9780780365360</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjYJAwNNAzNDSw1Pd09nXVMzIwMNCzMDc0MLBkZuAyMLcwMDYzNTYz4WDgLS7OAkoamBqZG5kYcTKY-eXn5WTmpSYWKZQUJaalZSYr5OanpAKF0hXy0xTCnIIUfANc3XWNFMoyU1LzFYrzS4uSU4t5GFjTEnOKU3mhNDeDlJtriLOHbmZqamp8QVFmbmJRZTzEBcZ4JQE7nzMb</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Doulamis, A.D.</creator><creator>Doulamis, N.D.</creator><creator>Kollias, S.D.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Nonlinear traffic modeling of VBR MPEG-2 video sources</title><author>Doulamis, A.D. ; Doulamis, N.D. ; Kollias, S.D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8710093</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aggregates</topic><topic>Bit rate</topic><topic>Delay lines</topic><topic>Feedforward neural networks</topic><topic>Filters</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Telecommunication traffic</topic><topic>Traffic control</topic><topic>Video sequences</topic><toplevel>online_resources</toplevel><creatorcontrib>Doulamis, A.D.</creatorcontrib><creatorcontrib>Doulamis, N.D.</creatorcontrib><creatorcontrib>Kollias, S.D.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Doulamis, A.D.</au><au>Doulamis, N.D.</au><au>Kollias, S.D.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nonlinear traffic modeling of VBR MPEG-2 video sources</atitle><btitle>2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532)</btitle><stitle>ICME</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>1318</spage><epage>1321 vol.3</epage><pages>1318-1321 vol.3</pages><isbn>0780365364</isbn><isbn>9780780365360</isbn><abstract>A neural network scheme is presented for modeling VBR MPEG-2 video sources. In particular, three nonlinear autoregressive models (NAR) are proposed to model the aggregate MPEG-2 video sequence, each of which corresponds to one of the three types of frames (I, P and B frames). Then, the optimal mean-squared error predictor of the NAR model is implemented using a feedforward neural network with a tapped delay line (TDL) filter. A novel algorithm is also introduced, which handles the significant effect of the correlation among the I, P and B frames on the estimation of network resources. Furthermore, a new mechanism is proposed to improve the modeling accuracy, especially at high bit rates, based on a generalized regression neural network. Experimental studies and computer simulations illustrate the efficiency and robustness of the proposed model as predictor of the network resources compared to conventional models.</abstract><pub>IEEE</pub><doi>10.1109/ICME.2000.871009</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 0780365364
ispartof 2000 IEEE International Conference on Multimedia and Expo. ICME2000. Proceedings. Latest Advances in the Fast Changing World of Multimedia (Cat. No.00TH8532), 2000, Vol.3, p.1318-1321 vol.3
issn
language eng
recordid cdi_ieee_primary_871009
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregates
Bit rate
Delay lines
Feedforward neural networks
Filters
Neural networks
Predictive models
Telecommunication traffic
Traffic control
Video sequences
title Nonlinear traffic modeling of VBR MPEG-2 video sources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T12%3A03%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nonlinear%20traffic%20modeling%20of%20VBR%20MPEG-2%20video%20sources&rft.btitle=2000%20IEEE%20International%20Conference%20on%20Multimedia%20and%20Expo.%20ICME2000.%20Proceedings.%20Latest%20Advances%20in%20the%20Fast%20Changing%20World%20of%20Multimedia%20(Cat.%20No.00TH8532)&rft.au=Doulamis,%20A.D.&rft.date=2000&rft.volume=3&rft.spage=1318&rft.epage=1321%20vol.3&rft.pages=1318-1321%20vol.3&rft.isbn=0780365364&rft.isbn_list=9780780365360&rft_id=info:doi/10.1109/ICME.2000.871009&rft_dat=%3Cieee_6IE%3E871009%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=871009&rfr_iscdi=true