A Tunable High-Sensitivity Refractive Index of Analyte Biosensor Based on Metal-Nanoscale Covered Photonic Crystal Fiber With Surface Plasmon Resonance
A tunable high-sensitivity gold-film covered photonic crystal fiber refractive index biosensor based on surface plasmon resonance is proposed. The finite element method is used to analyze and discuss the sensing performance of the biosensor to the analyte. The radio interference (RI) of the analyte...
Gespeichert in:
Veröffentlicht in: | IEEE photonics journal 2019-06, Vol.11 (3), p.1-14 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 14 |
---|---|
container_issue | 3 |
container_start_page | 1 |
container_title | IEEE photonics journal |
container_volume | 11 |
creator | Fan, Zhenkai |
description | A tunable high-sensitivity gold-film covered photonic crystal fiber refractive index biosensor based on surface plasmon resonance is proposed. The finite element method is used to analyze and discuss the sensing performance of the biosensor to the analyte. The radio interference (RI) of the analyte is detected by flowing it though the outer fiber surface. The phase matching condition is satisfied between the fundamental mode and the surface plasmon polariton modes, whose resonance coupling can be achieved. The complete coupling and incomplete coupling are excited as the analyte RI increases, and the resonance strength of the complete coupling is stronger than that of the incomplete coupling. It can be proved by calculation that the resonance coupling for the fundamental mode and the fifth-, sixth-, or seventh-order SPP mode has been obtained at different wavelengths. However, the biosensor has obtained four ranges including the analyte RI from 1.33 to 1.38, 1.405 to 1.425, 1.425 to 1.445, and 1.405 to 1.445, respectively. Their average sensitivities are 1971, 8220, 15180, and 5140 nm/RIU, and the linearities are 0.82982, 0.99771, 0.98104, and 0.99837, respectively. In short, the superior performance of tunable, wide-range, and high sensitivity is obtained, which shows a bright application prospect in the field of bio-detection technology. |
doi_str_mv | 10.1109/JPHOT.2019.2915235 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8709795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8709795</ieee_id><doaj_id>oai_doaj_org_article_2d71d0869059411885524b3adc0e24e3</doaj_id><sourcerecordid>2237693018</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-81ff30be3ae7efe81813f59bb3642dd0bef688ebecabef06788e3623c4f280c83</originalsourceid><addsrcrecordid>eNpNkc1OGzEUhUdVK5VSXqDdWOp6gn_GM_YyRIWkohBBUJeWx3NNHA02tR3UPElfF4cgxMr355zvSj5V9Y3gCSFYnv5azq9XE4qJnFBJOGX8Q3VEZMNq3HL-8V39ufqS0gbjtsjkUfV_ilZbr_sR0Nzdr-tb8Mll9-TyDt2AjdqUBtDCD_APBYumXo-7DOjMhVSkIaIznWBAwaPfkPVYX2kfktGFNwtPEMtquQ45eGfQLO5SkaBz10NEf1xeo9tttNoAWo46PRTGDaTgtTfwtfpk9Zjg5PU9ru7Of65m8_ry-mIxm17WpsE814JYy3APTEMHFgQRhFku-561DR2GsrGtENCD0aXEbVca1lJmGksFNoIdV4sDdwh6ox6je9Bxp4J26mUQ4r3SMTszgqJDRwYsWom5bAgRgnPa9EwPBgNtgBXWjwPrMYa_W0hZbcI2lg9LilLWtZJhsr9IDyoTQ0oR7NtVgtU-TPUSptqHqV7DLKbvB5MDgDeD6LDsJGfPQSScsw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2237693018</pqid></control><display><type>article</type><title>A Tunable High-Sensitivity Refractive Index of Analyte Biosensor Based on Metal-Nanoscale Covered Photonic Crystal Fiber With Surface Plasmon Resonance</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Fan, Zhenkai</creator><creatorcontrib>Fan, Zhenkai</creatorcontrib><description>A tunable high-sensitivity gold-film covered photonic crystal fiber refractive index biosensor based on surface plasmon resonance is proposed. The finite element method is used to analyze and discuss the sensing performance of the biosensor to the analyte. The radio interference (RI) of the analyte is detected by flowing it though the outer fiber surface. The phase matching condition is satisfied between the fundamental mode and the surface plasmon polariton modes, whose resonance coupling can be achieved. The complete coupling and incomplete coupling are excited as the analyte RI increases, and the resonance strength of the complete coupling is stronger than that of the incomplete coupling. It can be proved by calculation that the resonance coupling for the fundamental mode and the fifth-, sixth-, or seventh-order SPP mode has been obtained at different wavelengths. However, the biosensor has obtained four ranges including the analyte RI from 1.33 to 1.38, 1.405 to 1.425, 1.425 to 1.445, and 1.405 to 1.445, respectively. Their average sensitivities are 1971, 8220, 15180, and 5140 nm/RIU, and the linearities are 0.82982, 0.99771, 0.98104, and 0.99837, respectively. In short, the superior performance of tunable, wide-range, and high sensitivity is obtained, which shows a bright application prospect in the field of bio-detection technology.</description><identifier>ISSN: 1943-0655</identifier><identifier>EISSN: 1943-0655</identifier><identifier>EISSN: 1943-0647</identifier><identifier>DOI: 10.1109/JPHOT.2019.2915235</identifier><identifier>CODEN: PJHOC3</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>biosensor ; Biosensors ; Coupling ; Couplings ; Crystal fibers ; Finite element method ; Gold ; Holography ; Optical sensors ; Phase matching ; Photonic crystal fiber ; Photonic crystals ; Polaritons ; Refractivity ; Sensitivity ; Sensitivity analysis ; Surface matching ; Surface plasmon resonance</subject><ispartof>IEEE photonics journal, 2019-06, Vol.11 (3), p.1-14</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-81ff30be3ae7efe81813f59bb3642dd0bef688ebecabef06788e3623c4f280c83</citedby><cites>FETCH-LOGICAL-c405t-81ff30be3ae7efe81813f59bb3642dd0bef688ebecabef06788e3623c4f280c83</cites><orcidid>0000-0003-3365-6674</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8709795$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,27633,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Fan, Zhenkai</creatorcontrib><title>A Tunable High-Sensitivity Refractive Index of Analyte Biosensor Based on Metal-Nanoscale Covered Photonic Crystal Fiber With Surface Plasmon Resonance</title><title>IEEE photonics journal</title><addtitle>JPHOT</addtitle><description>A tunable high-sensitivity gold-film covered photonic crystal fiber refractive index biosensor based on surface plasmon resonance is proposed. The finite element method is used to analyze and discuss the sensing performance of the biosensor to the analyte. The radio interference (RI) of the analyte is detected by flowing it though the outer fiber surface. The phase matching condition is satisfied between the fundamental mode and the surface plasmon polariton modes, whose resonance coupling can be achieved. The complete coupling and incomplete coupling are excited as the analyte RI increases, and the resonance strength of the complete coupling is stronger than that of the incomplete coupling. It can be proved by calculation that the resonance coupling for the fundamental mode and the fifth-, sixth-, or seventh-order SPP mode has been obtained at different wavelengths. However, the biosensor has obtained four ranges including the analyte RI from 1.33 to 1.38, 1.405 to 1.425, 1.425 to 1.445, and 1.405 to 1.445, respectively. Their average sensitivities are 1971, 8220, 15180, and 5140 nm/RIU, and the linearities are 0.82982, 0.99771, 0.98104, and 0.99837, respectively. In short, the superior performance of tunable, wide-range, and high sensitivity is obtained, which shows a bright application prospect in the field of bio-detection technology.</description><subject>biosensor</subject><subject>Biosensors</subject><subject>Coupling</subject><subject>Couplings</subject><subject>Crystal fibers</subject><subject>Finite element method</subject><subject>Gold</subject><subject>Holography</subject><subject>Optical sensors</subject><subject>Phase matching</subject><subject>Photonic crystal fiber</subject><subject>Photonic crystals</subject><subject>Polaritons</subject><subject>Refractivity</subject><subject>Sensitivity</subject><subject>Sensitivity analysis</subject><subject>Surface matching</subject><subject>Surface plasmon resonance</subject><issn>1943-0655</issn><issn>1943-0655</issn><issn>1943-0647</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1OGzEUhUdVK5VSXqDdWOp6gn_GM_YyRIWkohBBUJeWx3NNHA02tR3UPElfF4cgxMr355zvSj5V9Y3gCSFYnv5azq9XE4qJnFBJOGX8Q3VEZMNq3HL-8V39ufqS0gbjtsjkUfV_ilZbr_sR0Nzdr-tb8Mll9-TyDt2AjdqUBtDCD_APBYumXo-7DOjMhVSkIaIznWBAwaPfkPVYX2kfktGFNwtPEMtquQ45eGfQLO5SkaBz10NEf1xeo9tttNoAWo46PRTGDaTgtTfwtfpk9Zjg5PU9ru7Of65m8_ry-mIxm17WpsE814JYy3APTEMHFgQRhFku-561DR2GsrGtENCD0aXEbVca1lJmGksFNoIdV4sDdwh6ox6je9Bxp4J26mUQ4r3SMTszgqJDRwYsWom5bAgRgnPa9EwPBgNtgBXWjwPrMYa_W0hZbcI2lg9LilLWtZJhsr9IDyoTQ0oR7NtVgtU-TPUSptqHqV7DLKbvB5MDgDeD6LDsJGfPQSScsw</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Fan, Zhenkai</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3365-6674</orcidid></search><sort><creationdate>20190601</creationdate><title>A Tunable High-Sensitivity Refractive Index of Analyte Biosensor Based on Metal-Nanoscale Covered Photonic Crystal Fiber With Surface Plasmon Resonance</title><author>Fan, Zhenkai</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-81ff30be3ae7efe81813f59bb3642dd0bef688ebecabef06788e3623c4f280c83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>biosensor</topic><topic>Biosensors</topic><topic>Coupling</topic><topic>Couplings</topic><topic>Crystal fibers</topic><topic>Finite element method</topic><topic>Gold</topic><topic>Holography</topic><topic>Optical sensors</topic><topic>Phase matching</topic><topic>Photonic crystal fiber</topic><topic>Photonic crystals</topic><topic>Polaritons</topic><topic>Refractivity</topic><topic>Sensitivity</topic><topic>Sensitivity analysis</topic><topic>Surface matching</topic><topic>Surface plasmon resonance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Zhenkai</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE photonics journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Zhenkai</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Tunable High-Sensitivity Refractive Index of Analyte Biosensor Based on Metal-Nanoscale Covered Photonic Crystal Fiber With Surface Plasmon Resonance</atitle><jtitle>IEEE photonics journal</jtitle><stitle>JPHOT</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>11</volume><issue>3</issue><spage>1</spage><epage>14</epage><pages>1-14</pages><issn>1943-0655</issn><eissn>1943-0655</eissn><eissn>1943-0647</eissn><coden>PJHOC3</coden><abstract>A tunable high-sensitivity gold-film covered photonic crystal fiber refractive index biosensor based on surface plasmon resonance is proposed. The finite element method is used to analyze and discuss the sensing performance of the biosensor to the analyte. The radio interference (RI) of the analyte is detected by flowing it though the outer fiber surface. The phase matching condition is satisfied between the fundamental mode and the surface plasmon polariton modes, whose resonance coupling can be achieved. The complete coupling and incomplete coupling are excited as the analyte RI increases, and the resonance strength of the complete coupling is stronger than that of the incomplete coupling. It can be proved by calculation that the resonance coupling for the fundamental mode and the fifth-, sixth-, or seventh-order SPP mode has been obtained at different wavelengths. However, the biosensor has obtained four ranges including the analyte RI from 1.33 to 1.38, 1.405 to 1.425, 1.425 to 1.445, and 1.405 to 1.445, respectively. Their average sensitivities are 1971, 8220, 15180, and 5140 nm/RIU, and the linearities are 0.82982, 0.99771, 0.98104, and 0.99837, respectively. In short, the superior performance of tunable, wide-range, and high sensitivity is obtained, which shows a bright application prospect in the field of bio-detection technology.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOT.2019.2915235</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-3365-6674</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1943-0655 |
ispartof | IEEE photonics journal, 2019-06, Vol.11 (3), p.1-14 |
issn | 1943-0655 1943-0655 1943-0647 |
language | eng |
recordid | cdi_ieee_primary_8709795 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | biosensor Biosensors Coupling Couplings Crystal fibers Finite element method Gold Holography Optical sensors Phase matching Photonic crystal fiber Photonic crystals Polaritons Refractivity Sensitivity Sensitivity analysis Surface matching Surface plasmon resonance |
title | A Tunable High-Sensitivity Refractive Index of Analyte Biosensor Based on Metal-Nanoscale Covered Photonic Crystal Fiber With Surface Plasmon Resonance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T05%3A53%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Tunable%20High-Sensitivity%20Refractive%20Index%20of%20Analyte%20Biosensor%20Based%20on%20Metal-Nanoscale%20Covered%20Photonic%20Crystal%20Fiber%20With%20Surface%20Plasmon%20Resonance&rft.jtitle=IEEE%20photonics%20journal&rft.au=Fan,%20Zhenkai&rft.date=2019-06-01&rft.volume=11&rft.issue=3&rft.spage=1&rft.epage=14&rft.pages=1-14&rft.issn=1943-0655&rft.eissn=1943-0655&rft.coden=PJHOC3&rft_id=info:doi/10.1109/JPHOT.2019.2915235&rft_dat=%3Cproquest_ieee_%3E2237693018%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2237693018&rft_id=info:pmid/&rft_ieee_id=8709795&rft_doaj_id=oai_doaj_org_article_2d71d0869059411885524b3adc0e24e3&rfr_iscdi=true |