Dynamic distributed genetic algorithms
Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this pa...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1136 vol.2 |
---|---|
container_issue | |
container_start_page | 1132 |
container_title | |
container_volume | 2 |
creator | Weilie Yi Qizhen Liu Yongbao He |
description | Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this paper, a new method to manage the distributed populations in evolution is introduced. A supervising subroutine observes all the sub-populations during evolution. The sizes of these sub-populations are dynamically changed according to their performance. Better sub-populations get more quotas of the total number of individuals, thus get more possibility to produce even better ones. This algorithm is illustrated with an example. Different policies of managing the sub-populations are compared and discussed. The main conclusion is that dynamical rearrangement of the global population can make the process of evolution faster and more stable. |
doi_str_mv | 10.1109/CEC.2000.870775 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_870775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870775</ieee_id><sourcerecordid>870775</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-357eced95a0e37cce4fd238b77e95f91ab55607d5c1bea8a17841a6ffd48660e3</originalsourceid><addsrcrecordid>eNotj0FLAzEUhAMiKHXPgqeevO360uTlJUdZqxUKXvRcsslLjXSrbOKh_96FCgMD8zEDI8SthE5KcA_9uu9WANBZAiK8EI0jC7OUUYR4JZpSvmYOGrUhcy3un05HP-awjLnUKQ-_leNyz0euc-YP--8p18-x3IjL5A-Fm39fiI_n9Xu_abdvL6_947bNEnRtFRIHjg49sKIQWKe4UnYgYofJST8gGqCIQQ7srZdktfQmpaitMXNnIe7Ou5mZdz9THv102p3PqD_84D7i</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic distributed genetic algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weilie Yi ; Qizhen Liu ; Yongbao He</creator><creatorcontrib>Weilie Yi ; Qizhen Liu ; Yongbao He</creatorcontrib><description>Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this paper, a new method to manage the distributed populations in evolution is introduced. A supervising subroutine observes all the sub-populations during evolution. The sizes of these sub-populations are dynamically changed according to their performance. Better sub-populations get more quotas of the total number of individuals, thus get more possibility to produce even better ones. This algorithm is illustrated with an example. Different policies of managing the sub-populations are compared and discussed. The main conclusion is that dynamical rearrangement of the global population can make the process of evolution faster and more stable.</description><identifier>ISBN: 9780780363755</identifier><identifier>ISBN: 0780363752</identifier><identifier>DOI: 10.1109/CEC.2000.870775</identifier><language>eng</language><publisher>IEEE</publisher><subject>Centralized control ; Computer science ; Genetic algorithms ; Genetic mutations ; Helium ; Monitoring ; Pediatrics</subject><ispartof>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.2, p.1132-1136 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/870775$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weilie Yi</creatorcontrib><creatorcontrib>Qizhen Liu</creatorcontrib><creatorcontrib>Yongbao He</creatorcontrib><title>Dynamic distributed genetic algorithms</title><title>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</title><addtitle>CEC</addtitle><description>Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this paper, a new method to manage the distributed populations in evolution is introduced. A supervising subroutine observes all the sub-populations during evolution. The sizes of these sub-populations are dynamically changed according to their performance. Better sub-populations get more quotas of the total number of individuals, thus get more possibility to produce even better ones. This algorithm is illustrated with an example. Different policies of managing the sub-populations are compared and discussed. The main conclusion is that dynamical rearrangement of the global population can make the process of evolution faster and more stable.</description><subject>Centralized control</subject><subject>Computer science</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Helium</subject><subject>Monitoring</subject><subject>Pediatrics</subject><isbn>9780780363755</isbn><isbn>0780363752</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLAzEUhAMiKHXPgqeevO360uTlJUdZqxUKXvRcsslLjXSrbOKh_96FCgMD8zEDI8SthE5KcA_9uu9WANBZAiK8EI0jC7OUUYR4JZpSvmYOGrUhcy3un05HP-awjLnUKQ-_leNyz0euc-YP--8p18-x3IjL5A-Fm39fiI_n9Xu_abdvL6_947bNEnRtFRIHjg49sKIQWKe4UnYgYofJST8gGqCIQQ7srZdktfQmpaitMXNnIe7Ou5mZdz9THv102p3PqD_84D7i</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Weilie Yi</creator><creator>Qizhen Liu</creator><creator>Yongbao He</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Dynamic distributed genetic algorithms</title><author>Weilie Yi ; Qizhen Liu ; Yongbao He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-357eced95a0e37cce4fd238b77e95f91ab55607d5c1bea8a17841a6ffd48660e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Centralized control</topic><topic>Computer science</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Helium</topic><topic>Monitoring</topic><topic>Pediatrics</topic><toplevel>online_resources</toplevel><creatorcontrib>Weilie Yi</creatorcontrib><creatorcontrib>Qizhen Liu</creatorcontrib><creatorcontrib>Yongbao He</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weilie Yi</au><au>Qizhen Liu</au><au>Yongbao He</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic distributed genetic algorithms</atitle><btitle>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</btitle><stitle>CEC</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>1132</spage><epage>1136 vol.2</epage><pages>1132-1136 vol.2</pages><isbn>9780780363755</isbn><isbn>0780363752</isbn><abstract>Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this paper, a new method to manage the distributed populations in evolution is introduced. A supervising subroutine observes all the sub-populations during evolution. The sizes of these sub-populations are dynamically changed according to their performance. Better sub-populations get more quotas of the total number of individuals, thus get more possibility to produce even better ones. This algorithm is illustrated with an example. Different policies of managing the sub-populations are compared and discussed. The main conclusion is that dynamical rearrangement of the global population can make the process of evolution faster and more stable.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2000.870775</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780363755 |
ispartof | Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.2, p.1132-1136 vol.2 |
issn | |
language | eng |
recordid | cdi_ieee_primary_870775 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Centralized control Computer science Genetic algorithms Genetic mutations Helium Monitoring Pediatrics |
title | Dynamic distributed genetic algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20distributed%20genetic%20algorithms&rft.btitle=Proceedings%20of%20the%202000%20Congress%20on%20Evolutionary%20Computation.%20CEC00%20(Cat.%20No.00TH8512)&rft.au=Weilie%20Yi&rft.date=2000&rft.volume=2&rft.spage=1132&rft.epage=1136%20vol.2&rft.pages=1132-1136%20vol.2&rft.isbn=9780780363755&rft.isbn_list=0780363752&rft_id=info:doi/10.1109/CEC.2000.870775&rft_dat=%3Cieee_6IE%3E870775%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=870775&rfr_iscdi=true |