Dynamic distributed genetic algorithms

Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Weilie Yi, Qizhen Liu, Yongbao He
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1136 vol.2
container_issue
container_start_page 1132
container_title
container_volume 2
creator Weilie Yi
Qizhen Liu
Yongbao He
description Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this paper, a new method to manage the distributed populations in evolution is introduced. A supervising subroutine observes all the sub-populations during evolution. The sizes of these sub-populations are dynamically changed according to their performance. Better sub-populations get more quotas of the total number of individuals, thus get more possibility to produce even better ones. This algorithm is illustrated with an example. Different policies of managing the sub-populations are compared and discussed. The main conclusion is that dynamical rearrangement of the global population can make the process of evolution faster and more stable.
doi_str_mv 10.1109/CEC.2000.870775
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_870775</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870775</ieee_id><sourcerecordid>870775</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-357eced95a0e37cce4fd238b77e95f91ab55607d5c1bea8a17841a6ffd48660e3</originalsourceid><addsrcrecordid>eNotj0FLAzEUhAMiKHXPgqeevO360uTlJUdZqxUKXvRcsslLjXSrbOKh_96FCgMD8zEDI8SthE5KcA_9uu9WANBZAiK8EI0jC7OUUYR4JZpSvmYOGrUhcy3un05HP-awjLnUKQ-_leNyz0euc-YP--8p18-x3IjL5A-Fm39fiI_n9Xu_abdvL6_947bNEnRtFRIHjg49sKIQWKe4UnYgYofJST8gGqCIQQ7srZdktfQmpaitMXNnIe7Ou5mZdz9THv102p3PqD_84D7i</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dynamic distributed genetic algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Weilie Yi ; Qizhen Liu ; Yongbao He</creator><creatorcontrib>Weilie Yi ; Qizhen Liu ; Yongbao He</creatorcontrib><description>Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this paper, a new method to manage the distributed populations in evolution is introduced. A supervising subroutine observes all the sub-populations during evolution. The sizes of these sub-populations are dynamically changed according to their performance. Better sub-populations get more quotas of the total number of individuals, thus get more possibility to produce even better ones. This algorithm is illustrated with an example. Different policies of managing the sub-populations are compared and discussed. The main conclusion is that dynamical rearrangement of the global population can make the process of evolution faster and more stable.</description><identifier>ISBN: 9780780363755</identifier><identifier>ISBN: 0780363752</identifier><identifier>DOI: 10.1109/CEC.2000.870775</identifier><language>eng</language><publisher>IEEE</publisher><subject>Centralized control ; Computer science ; Genetic algorithms ; Genetic mutations ; Helium ; Monitoring ; Pediatrics</subject><ispartof>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.2, p.1132-1136 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870775$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/870775$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Weilie Yi</creatorcontrib><creatorcontrib>Qizhen Liu</creatorcontrib><creatorcontrib>Yongbao He</creatorcontrib><title>Dynamic distributed genetic algorithms</title><title>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</title><addtitle>CEC</addtitle><description>Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this paper, a new method to manage the distributed populations in evolution is introduced. A supervising subroutine observes all the sub-populations during evolution. The sizes of these sub-populations are dynamically changed according to their performance. Better sub-populations get more quotas of the total number of individuals, thus get more possibility to produce even better ones. This algorithm is illustrated with an example. Different policies of managing the sub-populations are compared and discussed. The main conclusion is that dynamical rearrangement of the global population can make the process of evolution faster and more stable.</description><subject>Centralized control</subject><subject>Computer science</subject><subject>Genetic algorithms</subject><subject>Genetic mutations</subject><subject>Helium</subject><subject>Monitoring</subject><subject>Pediatrics</subject><isbn>9780780363755</isbn><isbn>0780363752</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLAzEUhAMiKHXPgqeevO360uTlJUdZqxUKXvRcsslLjXSrbOKh_96FCgMD8zEDI8SthE5KcA_9uu9WANBZAiK8EI0jC7OUUYR4JZpSvmYOGrUhcy3un05HP-awjLnUKQ-_leNyz0euc-YP--8p18-x3IjL5A-Fm39fiI_n9Xu_abdvL6_947bNEnRtFRIHjg49sKIQWKe4UnYgYofJST8gGqCIQQ7srZdktfQmpaitMXNnIe7Ou5mZdz9THv102p3PqD_84D7i</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Weilie Yi</creator><creator>Qizhen Liu</creator><creator>Yongbao He</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Dynamic distributed genetic algorithms</title><author>Weilie Yi ; Qizhen Liu ; Yongbao He</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-357eced95a0e37cce4fd238b77e95f91ab55607d5c1bea8a17841a6ffd48660e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Centralized control</topic><topic>Computer science</topic><topic>Genetic algorithms</topic><topic>Genetic mutations</topic><topic>Helium</topic><topic>Monitoring</topic><topic>Pediatrics</topic><toplevel>online_resources</toplevel><creatorcontrib>Weilie Yi</creatorcontrib><creatorcontrib>Qizhen Liu</creatorcontrib><creatorcontrib>Yongbao He</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Weilie Yi</au><au>Qizhen Liu</au><au>Yongbao He</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dynamic distributed genetic algorithms</atitle><btitle>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</btitle><stitle>CEC</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>1132</spage><epage>1136 vol.2</epage><pages>1132-1136 vol.2</pages><isbn>9780780363755</isbn><isbn>0780363752</isbn><abstract>Distributed populations in genetic algorithms can make the search more smart, in that local minima may be skipped. However, when the global population is divided into small sub-populations, the ability of these sub-populations to evolve is set back because of their relatively small sizes. In this paper, a new method to manage the distributed populations in evolution is introduced. A supervising subroutine observes all the sub-populations during evolution. The sizes of these sub-populations are dynamically changed according to their performance. Better sub-populations get more quotas of the total number of individuals, thus get more possibility to produce even better ones. This algorithm is illustrated with an example. Different policies of managing the sub-populations are compared and discussed. The main conclusion is that dynamical rearrangement of the global population can make the process of evolution faster and more stable.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2000.870775</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780363755
ispartof Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.2, p.1132-1136 vol.2
issn
language eng
recordid cdi_ieee_primary_870775
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Centralized control
Computer science
Genetic algorithms
Genetic mutations
Helium
Monitoring
Pediatrics
title Dynamic distributed genetic algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T10%3A11%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dynamic%20distributed%20genetic%20algorithms&rft.btitle=Proceedings%20of%20the%202000%20Congress%20on%20Evolutionary%20Computation.%20CEC00%20(Cat.%20No.00TH8512)&rft.au=Weilie%20Yi&rft.date=2000&rft.volume=2&rft.spage=1132&rft.epage=1136%20vol.2&rft.pages=1132-1136%20vol.2&rft.isbn=9780780363755&rft.isbn_list=0780363752&rft_id=info:doi/10.1109/CEC.2000.870775&rft_dat=%3Cieee_6IE%3E870775%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=870775&rfr_iscdi=true