Prediction and Analysis of EMI Spectrum Based on the Operating Principle of EMC Spectrum Analyzers
EMC spectrum analyzers are popularly used for electromagnetic interference (EMI) measurement in power electronics systems. Depending on the specifications of EMI standards, the EMI measurement could be very time consuming. Conventionally, the fast Fourier transform is used to derive the EMI spectrum...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power electronics 2020-01, Vol.35 (1), p.263-275 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 275 |
---|---|
container_issue | 1 |
container_start_page | 263 |
container_title | IEEE transactions on power electronics |
container_volume | 35 |
creator | Yang, Le Wang, Shuo Zhao, Hui Zhi, Yongjian |
description | EMC spectrum analyzers are popularly used for electromagnetic interference (EMI) measurement in power electronics systems. Depending on the specifications of EMI standards, the EMI measurement could be very time consuming. Conventionally, the fast Fourier transform is used to derive the EMI spectrum from the measured time-domain waveforms. However, these results may not agree with the measurement results from spectrum analyzers, and sometimes the difference could be significant. In this paper, a technique to quickly and accurately predict and analyze the EMI spectrum from time-domain waveforms is proposed. The technique is developed based on the spectrum analyzer's operating principle and the requirements of EMI standards. The EMI spectra of three modulation schemes are also analyzed. Theoretical analysis, simulations, and experiments were all conducted. The predicted peak, quasi-peak, and average EMI matches the measured EMI in whole conductive frequency range. The developed technique can accurately predict EMI using much shorter time than conventional EMC spectrum analyzers and it saves cost of expensive spectrum analyzers. |
doi_str_mv | 10.1109/TPEL.2019.2914468 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8704894</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8704894</ieee_id><sourcerecordid>2308296175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-705c2f894069218843ed76eb4fb94fc37a791e386695c09e8e368a18d356f1343</originalsourceid><addsrcrecordid>eNpFkMFPwjAUhxujiYj-AcZLE8_DvrXr2iMSVBIMJOK5Kd2blsA223HAv97hiJ7e5ft-efkIuQU2AmD6YbWczkcpAz1KNQgh1RkZgBaQMGD5ORkwpbJEac0vyVWMG8ZAZAwGZL0MWHjX-rqitirouLLbQ_SR1iWdvs7oW4OuDfsdfbQRC9pR7SfSRYPBtr76oMvgK-ebLfbC5F_4XfrGEK_JRWm3EW9Od0jen6aryUsyXzzPJuN54lLN2yRnmUtLpQWTOgWlBMcil7gW5VqL0vHc5hqQKyl15phGhVwqC6rgmSyBCz4k9_1uE-qvPcbWbOp96L6IJuVMpVpCnnUU9JQLdYwBS9MEv7PhYICZY0pzTGmOKc0pZefc9Y5HxD9e5Ux07_IfbIhuIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2308296175</pqid></control><display><type>article</type><title>Prediction and Analysis of EMI Spectrum Based on the Operating Principle of EMC Spectrum Analyzers</title><source>IEEE Electronic Library (IEL)</source><creator>Yang, Le ; Wang, Shuo ; Zhao, Hui ; Zhi, Yongjian</creator><creatorcontrib>Yang, Le ; Wang, Shuo ; Zhao, Hui ; Zhi, Yongjian</creatorcontrib><description>EMC spectrum analyzers are popularly used for electromagnetic interference (EMI) measurement in power electronics systems. Depending on the specifications of EMI standards, the EMI measurement could be very time consuming. Conventionally, the fast Fourier transform is used to derive the EMI spectrum from the measured time-domain waveforms. However, these results may not agree with the measurement results from spectrum analyzers, and sometimes the difference could be significant. In this paper, a technique to quickly and accurately predict and analyze the EMI spectrum from time-domain waveforms is proposed. The technique is developed based on the spectrum analyzer's operating principle and the requirements of EMI standards. The EMI spectra of three modulation schemes are also analyzed. Theoretical analysis, simulations, and experiments were all conducted. The predicted peak, quasi-peak, and average EMI matches the measured EMI in whole conductive frequency range. The developed technique can accurately predict EMI using much shorter time than conventional EMC spectrum analyzers and it saves cost of expensive spectrum analyzers.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2019.2914468</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Analytical models ; Cost analysis ; Detectors ; Electromagnetic interference ; Electromagnetic interference (EMI) noise prediction ; envelope detector ; Fast Fourier transformations ; Fourier transforms ; Frequency measurement ; Frequency ranges ; Gain ; Gain measurement ; Memory expansion boards ; Power harmonic filters ; Predictions ; resolution bandwidth (RBW) ; sideband effect ; Spectrum analysers ; spectrum analyzer ; Time domain analysis ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2020-01, Vol.35 (1), p.263-275</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-705c2f894069218843ed76eb4fb94fc37a791e386695c09e8e368a18d356f1343</citedby><cites>FETCH-LOGICAL-c293t-705c2f894069218843ed76eb4fb94fc37a791e386695c09e8e368a18d356f1343</cites><orcidid>0000-0002-1827-4355 ; 0000-0003-2384-1606</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8704894$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8704894$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Le</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Zhi, Yongjian</creatorcontrib><title>Prediction and Analysis of EMI Spectrum Based on the Operating Principle of EMC Spectrum Analyzers</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>EMC spectrum analyzers are popularly used for electromagnetic interference (EMI) measurement in power electronics systems. Depending on the specifications of EMI standards, the EMI measurement could be very time consuming. Conventionally, the fast Fourier transform is used to derive the EMI spectrum from the measured time-domain waveforms. However, these results may not agree with the measurement results from spectrum analyzers, and sometimes the difference could be significant. In this paper, a technique to quickly and accurately predict and analyze the EMI spectrum from time-domain waveforms is proposed. The technique is developed based on the spectrum analyzer's operating principle and the requirements of EMI standards. The EMI spectra of three modulation schemes are also analyzed. Theoretical analysis, simulations, and experiments were all conducted. The predicted peak, quasi-peak, and average EMI matches the measured EMI in whole conductive frequency range. The developed technique can accurately predict EMI using much shorter time than conventional EMC spectrum analyzers and it saves cost of expensive spectrum analyzers.</description><subject>Analytical models</subject><subject>Cost analysis</subject><subject>Detectors</subject><subject>Electromagnetic interference</subject><subject>Electromagnetic interference (EMI) noise prediction</subject><subject>envelope detector</subject><subject>Fast Fourier transformations</subject><subject>Fourier transforms</subject><subject>Frequency measurement</subject><subject>Frequency ranges</subject><subject>Gain</subject><subject>Gain measurement</subject><subject>Memory expansion boards</subject><subject>Power harmonic filters</subject><subject>Predictions</subject><subject>resolution bandwidth (RBW)</subject><subject>sideband effect</subject><subject>Spectrum analysers</subject><subject>spectrum analyzer</subject><subject>Time domain analysis</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpFkMFPwjAUhxujiYj-AcZLE8_DvrXr2iMSVBIMJOK5Kd2blsA223HAv97hiJ7e5ft-efkIuQU2AmD6YbWczkcpAz1KNQgh1RkZgBaQMGD5ORkwpbJEac0vyVWMG8ZAZAwGZL0MWHjX-rqitirouLLbQ_SR1iWdvs7oW4OuDfsdfbQRC9pR7SfSRYPBtr76oMvgK-ebLfbC5F_4XfrGEK_JRWm3EW9Od0jen6aryUsyXzzPJuN54lLN2yRnmUtLpQWTOgWlBMcil7gW5VqL0vHc5hqQKyl15phGhVwqC6rgmSyBCz4k9_1uE-qvPcbWbOp96L6IJuVMpVpCnnUU9JQLdYwBS9MEv7PhYICZY0pzTGmOKc0pZefc9Y5HxD9e5Ux07_IfbIhuIA</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Yang, Le</creator><creator>Wang, Shuo</creator><creator>Zhao, Hui</creator><creator>Zhi, Yongjian</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-1827-4355</orcidid><orcidid>https://orcid.org/0000-0003-2384-1606</orcidid></search><sort><creationdate>202001</creationdate><title>Prediction and Analysis of EMI Spectrum Based on the Operating Principle of EMC Spectrum Analyzers</title><author>Yang, Le ; Wang, Shuo ; Zhao, Hui ; Zhi, Yongjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-705c2f894069218843ed76eb4fb94fc37a791e386695c09e8e368a18d356f1343</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Analytical models</topic><topic>Cost analysis</topic><topic>Detectors</topic><topic>Electromagnetic interference</topic><topic>Electromagnetic interference (EMI) noise prediction</topic><topic>envelope detector</topic><topic>Fast Fourier transformations</topic><topic>Fourier transforms</topic><topic>Frequency measurement</topic><topic>Frequency ranges</topic><topic>Gain</topic><topic>Gain measurement</topic><topic>Memory expansion boards</topic><topic>Power harmonic filters</topic><topic>Predictions</topic><topic>resolution bandwidth (RBW)</topic><topic>sideband effect</topic><topic>Spectrum analysers</topic><topic>spectrum analyzer</topic><topic>Time domain analysis</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Le</creatorcontrib><creatorcontrib>Wang, Shuo</creatorcontrib><creatorcontrib>Zhao, Hui</creatorcontrib><creatorcontrib>Zhi, Yongjian</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Le</au><au>Wang, Shuo</au><au>Zhao, Hui</au><au>Zhi, Yongjian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prediction and Analysis of EMI Spectrum Based on the Operating Principle of EMC Spectrum Analyzers</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2020-01</date><risdate>2020</risdate><volume>35</volume><issue>1</issue><spage>263</spage><epage>275</epage><pages>263-275</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>EMC spectrum analyzers are popularly used for electromagnetic interference (EMI) measurement in power electronics systems. Depending on the specifications of EMI standards, the EMI measurement could be very time consuming. Conventionally, the fast Fourier transform is used to derive the EMI spectrum from the measured time-domain waveforms. However, these results may not agree with the measurement results from spectrum analyzers, and sometimes the difference could be significant. In this paper, a technique to quickly and accurately predict and analyze the EMI spectrum from time-domain waveforms is proposed. The technique is developed based on the spectrum analyzer's operating principle and the requirements of EMI standards. The EMI spectra of three modulation schemes are also analyzed. Theoretical analysis, simulations, and experiments were all conducted. The predicted peak, quasi-peak, and average EMI matches the measured EMI in whole conductive frequency range. The developed technique can accurately predict EMI using much shorter time than conventional EMC spectrum analyzers and it saves cost of expensive spectrum analyzers.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2019.2914468</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-1827-4355</orcidid><orcidid>https://orcid.org/0000-0003-2384-1606</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2020-01, Vol.35 (1), p.263-275 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_8704894 |
source | IEEE Electronic Library (IEL) |
subjects | Analytical models Cost analysis Detectors Electromagnetic interference Electromagnetic interference (EMI) noise prediction envelope detector Fast Fourier transformations Fourier transforms Frequency measurement Frequency ranges Gain Gain measurement Memory expansion boards Power harmonic filters Predictions resolution bandwidth (RBW) sideband effect Spectrum analysers spectrum analyzer Time domain analysis Waveforms |
title | Prediction and Analysis of EMI Spectrum Based on the Operating Principle of EMC Spectrum Analyzers |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T04%3A55%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prediction%20and%20Analysis%20of%20EMI%20Spectrum%20Based%20on%20the%20Operating%20Principle%20of%20EMC%20Spectrum%20Analyzers&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Yang,%20Le&rft.date=2020-01&rft.volume=35&rft.issue=1&rft.spage=263&rft.epage=275&rft.pages=263-275&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2019.2914468&rft_dat=%3Cproquest_RIE%3E2308296175%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2308296175&rft_id=info:pmid/&rft_ieee_id=8704894&rfr_iscdi=true |