Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid

This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on automation science and engineering 2020-01, Vol.17 (1), p.117-128
Hauptverfasser: Ouammi, Ahmed, Achour, Yasmine, Zejli, Driss, Dagdougui, Hanane
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 128
container_issue 1
container_start_page 117
container_title IEEE transactions on automation science and engineering
container_volume 17
creator Ouammi, Ahmed
Achour, Yasmine
Zejli, Driss
Dagdougui, Hanane
description This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (MPC) that considers fluctuations of stochastic renewable sources as well as weather conditions. A comprehensive finite-horizon scheduling optimization model is formulated to optimally control the operation of the NGIM, which integrates both forecasts and newly updated information collected from the available sensors at the network level. The model can be implemented as a supervisory control and energy management system for the NGIM to manipulate the indoor climate and optimize the crop production. The cooperation is reached through a bidirectional communication infrastructure, where a master central controller is available at the network level and is in charge of coordinating and managing various control signals. An MPC-based algorithm is used for the future operation scheduling of all subsystems available in the NGIM. The MPC strategy is tested through a case study where the influences of climate data on the operation of the NGIM are analyzed via numerical results.
doi_str_mv 10.1109/TASE.2019.2910756
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8704275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8704275</ieee_id><sourcerecordid>2338627564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6831541762eeeb0da49a20ff253f684167f885787607c243a400036c5d9803cd3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxYMoWKsfQLwseE7dP9lkcyyl1kJrhdZzWJNJTE2zcXZT6bd3Q8XTDMx7M29-QXDP6IQxmj7tptv5hFOWTnjKaCLji2DEpFShSJS4HPpIhjKV8jq4sXZPKY9USkfBcdt3gMfaGjyRtSmgIW8IRZ27-ghkZlqHpiGlQbLpXH3QDZm3gJXX6lZXcIDWEVOSV3A_Br-gINuDRkcWCNB-mt6CJcvWQYXa-eG6ztFUWBe3wVWpGwt3f3UcvD_Pd7OXcLVZLGfTVZjzVLgwVsIHZ0nMAeCDFjpKNadlyaUoYxWxOCmVkolKYprkPBI6opSKOJdFqqjICzEOHs97OzTfPViX7U2PrT-ZcSFUzD2pyKvYWeXTWYtQZh36X_GUMZoNeLMBbzbgzf7wes_D2VP7aP96ldDI7xS_7a53BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338627564</pqid></control><display><type>article</type><title>Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid</title><source>IEEE Electronic Library (IEL)</source><creator>Ouammi, Ahmed ; Achour, Yasmine ; Zejli, Driss ; Dagdougui, Hanane</creator><creatorcontrib>Ouammi, Ahmed ; Achour, Yasmine ; Zejli, Driss ; Dagdougui, Hanane</creatorcontrib><description>This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (MPC) that considers fluctuations of stochastic renewable sources as well as weather conditions. A comprehensive finite-horizon scheduling optimization model is formulated to optimally control the operation of the NGIM, which integrates both forecasts and newly updated information collected from the available sensors at the network level. The model can be implemented as a supervisory control and energy management system for the NGIM to manipulate the indoor climate and optimize the crop production. The cooperation is reached through a bidirectional communication infrastructure, where a master central controller is available at the network level and is in charge of coordinating and managing various control signals. An MPC-based algorithm is used for the future operation scheduling of all subsystems available in the NGIM. The MPC strategy is tested through a case study where the influences of climate data on the operation of the NGIM are analyzed via numerical results.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2019.2910756</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced metering infrastructure ; Agricultural management ; Agriculture ; Algorithms ; Control systems ; Crop production ; Distributed generation ; Energy management ; Greenhouses ; Intelligent management system ; Meteorology ; Microgrids ; model predictive control (MPC) ; Modernization ; networked greenhouses integrated microgrid ; Operation scheduling ; Optimal control ; Optimization ; Predictive control ; Smart grid ; Smart grids ; Subsystems ; Supervisory control ; Variation ; Weather</subject><ispartof>IEEE transactions on automation science and engineering, 2020-01, Vol.17 (1), p.117-128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6831541762eeeb0da49a20ff253f684167f885787607c243a400036c5d9803cd3</citedby><cites>FETCH-LOGICAL-c293t-6831541762eeeb0da49a20ff253f684167f885787607c243a400036c5d9803cd3</cites><orcidid>0000-0003-1327-8004 ; 0000-0001-7500-0468 ; 0000-0002-3735-5062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8704275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8704275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ouammi, Ahmed</creatorcontrib><creatorcontrib>Achour, Yasmine</creatorcontrib><creatorcontrib>Zejli, Driss</creatorcontrib><creatorcontrib>Dagdougui, Hanane</creatorcontrib><title>Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (MPC) that considers fluctuations of stochastic renewable sources as well as weather conditions. A comprehensive finite-horizon scheduling optimization model is formulated to optimally control the operation of the NGIM, which integrates both forecasts and newly updated information collected from the available sensors at the network level. The model can be implemented as a supervisory control and energy management system for the NGIM to manipulate the indoor climate and optimize the crop production. The cooperation is reached through a bidirectional communication infrastructure, where a master central controller is available at the network level and is in charge of coordinating and managing various control signals. An MPC-based algorithm is used for the future operation scheduling of all subsystems available in the NGIM. The MPC strategy is tested through a case study where the influences of climate data on the operation of the NGIM are analyzed via numerical results.</description><subject>Advanced metering infrastructure</subject><subject>Agricultural management</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Control systems</subject><subject>Crop production</subject><subject>Distributed generation</subject><subject>Energy management</subject><subject>Greenhouses</subject><subject>Intelligent management system</subject><subject>Meteorology</subject><subject>Microgrids</subject><subject>model predictive control (MPC)</subject><subject>Modernization</subject><subject>networked greenhouses integrated microgrid</subject><subject>Operation scheduling</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Subsystems</subject><subject>Supervisory control</subject><subject>Variation</subject><subject>Weather</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxYMoWKsfQLwseE7dP9lkcyyl1kJrhdZzWJNJTE2zcXZT6bd3Q8XTDMx7M29-QXDP6IQxmj7tptv5hFOWTnjKaCLji2DEpFShSJS4HPpIhjKV8jq4sXZPKY9USkfBcdt3gMfaGjyRtSmgIW8IRZ27-ghkZlqHpiGlQbLpXH3QDZm3gJXX6lZXcIDWEVOSV3A_Br-gINuDRkcWCNB-mt6CJcvWQYXa-eG6ztFUWBe3wVWpGwt3f3UcvD_Pd7OXcLVZLGfTVZjzVLgwVsIHZ0nMAeCDFjpKNadlyaUoYxWxOCmVkolKYprkPBI6opSKOJdFqqjICzEOHs97OzTfPViX7U2PrT-ZcSFUzD2pyKvYWeXTWYtQZh36X_GUMZoNeLMBbzbgzf7wes_D2VP7aP96ldDI7xS_7a53BA</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Ouammi, Ahmed</creator><creator>Achour, Yasmine</creator><creator>Zejli, Driss</creator><creator>Dagdougui, Hanane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1327-8004</orcidid><orcidid>https://orcid.org/0000-0001-7500-0468</orcidid><orcidid>https://orcid.org/0000-0002-3735-5062</orcidid></search><sort><creationdate>202001</creationdate><title>Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid</title><author>Ouammi, Ahmed ; Achour, Yasmine ; Zejli, Driss ; Dagdougui, Hanane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6831541762eeeb0da49a20ff253f684167f885787607c243a400036c5d9803cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced metering infrastructure</topic><topic>Agricultural management</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Control systems</topic><topic>Crop production</topic><topic>Distributed generation</topic><topic>Energy management</topic><topic>Greenhouses</topic><topic>Intelligent management system</topic><topic>Meteorology</topic><topic>Microgrids</topic><topic>model predictive control (MPC)</topic><topic>Modernization</topic><topic>networked greenhouses integrated microgrid</topic><topic>Operation scheduling</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Subsystems</topic><topic>Supervisory control</topic><topic>Variation</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Ouammi, Ahmed</creatorcontrib><creatorcontrib>Achour, Yasmine</creatorcontrib><creatorcontrib>Zejli, Driss</creatorcontrib><creatorcontrib>Dagdougui, Hanane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ouammi, Ahmed</au><au>Achour, Yasmine</au><au>Zejli, Driss</au><au>Dagdougui, Hanane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2020-01</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>117</spage><epage>128</epage><pages>117-128</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (MPC) that considers fluctuations of stochastic renewable sources as well as weather conditions. A comprehensive finite-horizon scheduling optimization model is formulated to optimally control the operation of the NGIM, which integrates both forecasts and newly updated information collected from the available sensors at the network level. The model can be implemented as a supervisory control and energy management system for the NGIM to manipulate the indoor climate and optimize the crop production. The cooperation is reached through a bidirectional communication infrastructure, where a master central controller is available at the network level and is in charge of coordinating and managing various control signals. An MPC-based algorithm is used for the future operation scheduling of all subsystems available in the NGIM. The MPC strategy is tested through a case study where the influences of climate data on the operation of the NGIM are analyzed via numerical results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASE.2019.2910756</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1327-8004</orcidid><orcidid>https://orcid.org/0000-0001-7500-0468</orcidid><orcidid>https://orcid.org/0000-0002-3735-5062</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1545-5955
ispartof IEEE transactions on automation science and engineering, 2020-01, Vol.17 (1), p.117-128
issn 1545-5955
1558-3783
language eng
recordid cdi_ieee_primary_8704275
source IEEE Electronic Library (IEL)
subjects Advanced metering infrastructure
Agricultural management
Agriculture
Algorithms
Control systems
Crop production
Distributed generation
Energy management
Greenhouses
Intelligent management system
Meteorology
Microgrids
model predictive control (MPC)
Modernization
networked greenhouses integrated microgrid
Operation scheduling
Optimal control
Optimization
Predictive control
Smart grid
Smart grids
Subsystems
Supervisory control
Variation
Weather
title Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervisory%20Model%20Predictive%20Control%20for%20Optimal%20Energy%20Management%20of%20Networked%20Smart%20Greenhouses%20Integrated%20Microgrid&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Ouammi,%20Ahmed&rft.date=2020-01&rft.volume=17&rft.issue=1&rft.spage=117&rft.epage=128&rft.pages=117-128&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2019.2910756&rft_dat=%3Cproquest_RIE%3E2338627564%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338627564&rft_id=info:pmid/&rft_ieee_id=8704275&rfr_iscdi=true