Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid
This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (M...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on automation science and engineering 2020-01, Vol.17 (1), p.117-128 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 128 |
---|---|
container_issue | 1 |
container_start_page | 117 |
container_title | IEEE transactions on automation science and engineering |
container_volume | 17 |
creator | Ouammi, Ahmed Achour, Yasmine Zejli, Driss Dagdougui, Hanane |
description | This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (MPC) that considers fluctuations of stochastic renewable sources as well as weather conditions. A comprehensive finite-horizon scheduling optimization model is formulated to optimally control the operation of the NGIM, which integrates both forecasts and newly updated information collected from the available sensors at the network level. The model can be implemented as a supervisory control and energy management system for the NGIM to manipulate the indoor climate and optimize the crop production. The cooperation is reached through a bidirectional communication infrastructure, where a master central controller is available at the network level and is in charge of coordinating and managing various control signals. An MPC-based algorithm is used for the future operation scheduling of all subsystems available in the NGIM. The MPC strategy is tested through a case study where the influences of climate data on the operation of the NGIM are analyzed via numerical results. |
doi_str_mv | 10.1109/TASE.2019.2910756 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8704275</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8704275</ieee_id><sourcerecordid>2338627564</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-6831541762eeeb0da49a20ff253f684167f885787607c243a400036c5d9803cd3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxYMoWKsfQLwseE7dP9lkcyyl1kJrhdZzWJNJTE2zcXZT6bd3Q8XTDMx7M29-QXDP6IQxmj7tptv5hFOWTnjKaCLji2DEpFShSJS4HPpIhjKV8jq4sXZPKY9USkfBcdt3gMfaGjyRtSmgIW8IRZ27-ghkZlqHpiGlQbLpXH3QDZm3gJXX6lZXcIDWEVOSV3A_Br-gINuDRkcWCNB-mt6CJcvWQYXa-eG6ztFUWBe3wVWpGwt3f3UcvD_Pd7OXcLVZLGfTVZjzVLgwVsIHZ0nMAeCDFjpKNadlyaUoYxWxOCmVkolKYprkPBI6opSKOJdFqqjICzEOHs97OzTfPViX7U2PrT-ZcSFUzD2pyKvYWeXTWYtQZh36X_GUMZoNeLMBbzbgzf7wes_D2VP7aP96ldDI7xS_7a53BA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2338627564</pqid></control><display><type>article</type><title>Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid</title><source>IEEE Electronic Library (IEL)</source><creator>Ouammi, Ahmed ; Achour, Yasmine ; Zejli, Driss ; Dagdougui, Hanane</creator><creatorcontrib>Ouammi, Ahmed ; Achour, Yasmine ; Zejli, Driss ; Dagdougui, Hanane</creatorcontrib><description>This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (MPC) that considers fluctuations of stochastic renewable sources as well as weather conditions. A comprehensive finite-horizon scheduling optimization model is formulated to optimally control the operation of the NGIM, which integrates both forecasts and newly updated information collected from the available sensors at the network level. The model can be implemented as a supervisory control and energy management system for the NGIM to manipulate the indoor climate and optimize the crop production. The cooperation is reached through a bidirectional communication infrastructure, where a master central controller is available at the network level and is in charge of coordinating and managing various control signals. An MPC-based algorithm is used for the future operation scheduling of all subsystems available in the NGIM. The MPC strategy is tested through a case study where the influences of climate data on the operation of the NGIM are analyzed via numerical results.</description><identifier>ISSN: 1545-5955</identifier><identifier>EISSN: 1558-3783</identifier><identifier>DOI: 10.1109/TASE.2019.2910756</identifier><identifier>CODEN: ITASC7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Advanced metering infrastructure ; Agricultural management ; Agriculture ; Algorithms ; Control systems ; Crop production ; Distributed generation ; Energy management ; Greenhouses ; Intelligent management system ; Meteorology ; Microgrids ; model predictive control (MPC) ; Modernization ; networked greenhouses integrated microgrid ; Operation scheduling ; Optimal control ; Optimization ; Predictive control ; Smart grid ; Smart grids ; Subsystems ; Supervisory control ; Variation ; Weather</subject><ispartof>IEEE transactions on automation science and engineering, 2020-01, Vol.17 (1), p.117-128</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-6831541762eeeb0da49a20ff253f684167f885787607c243a400036c5d9803cd3</citedby><cites>FETCH-LOGICAL-c293t-6831541762eeeb0da49a20ff253f684167f885787607c243a400036c5d9803cd3</cites><orcidid>0000-0003-1327-8004 ; 0000-0001-7500-0468 ; 0000-0002-3735-5062</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8704275$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8704275$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ouammi, Ahmed</creatorcontrib><creatorcontrib>Achour, Yasmine</creatorcontrib><creatorcontrib>Zejli, Driss</creatorcontrib><creatorcontrib>Dagdougui, Hanane</creatorcontrib><title>Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid</title><title>IEEE transactions on automation science and engineering</title><addtitle>TASE</addtitle><description>This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (MPC) that considers fluctuations of stochastic renewable sources as well as weather conditions. A comprehensive finite-horizon scheduling optimization model is formulated to optimally control the operation of the NGIM, which integrates both forecasts and newly updated information collected from the available sensors at the network level. The model can be implemented as a supervisory control and energy management system for the NGIM to manipulate the indoor climate and optimize the crop production. The cooperation is reached through a bidirectional communication infrastructure, where a master central controller is available at the network level and is in charge of coordinating and managing various control signals. An MPC-based algorithm is used for the future operation scheduling of all subsystems available in the NGIM. The MPC strategy is tested through a case study where the influences of climate data on the operation of the NGIM are analyzed via numerical results.</description><subject>Advanced metering infrastructure</subject><subject>Agricultural management</subject><subject>Agriculture</subject><subject>Algorithms</subject><subject>Control systems</subject><subject>Crop production</subject><subject>Distributed generation</subject><subject>Energy management</subject><subject>Greenhouses</subject><subject>Intelligent management system</subject><subject>Meteorology</subject><subject>Microgrids</subject><subject>model predictive control (MPC)</subject><subject>Modernization</subject><subject>networked greenhouses integrated microgrid</subject><subject>Operation scheduling</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Predictive control</subject><subject>Smart grid</subject><subject>Smart grids</subject><subject>Subsystems</subject><subject>Supervisory control</subject><subject>Variation</subject><subject>Weather</subject><issn>1545-5955</issn><issn>1558-3783</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxYMoWKsfQLwseE7dP9lkcyyl1kJrhdZzWJNJTE2zcXZT6bd3Q8XTDMx7M29-QXDP6IQxmj7tptv5hFOWTnjKaCLji2DEpFShSJS4HPpIhjKV8jq4sXZPKY9USkfBcdt3gMfaGjyRtSmgIW8IRZ27-ghkZlqHpiGlQbLpXH3QDZm3gJXX6lZXcIDWEVOSV3A_Br-gINuDRkcWCNB-mt6CJcvWQYXa-eG6ztFUWBe3wVWpGwt3f3UcvD_Pd7OXcLVZLGfTVZjzVLgwVsIHZ0nMAeCDFjpKNadlyaUoYxWxOCmVkolKYprkPBI6opSKOJdFqqjICzEOHs97OzTfPViX7U2PrT-ZcSFUzD2pyKvYWeXTWYtQZh36X_GUMZoNeLMBbzbgzf7wes_D2VP7aP96ldDI7xS_7a53BA</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Ouammi, Ahmed</creator><creator>Achour, Yasmine</creator><creator>Zejli, Driss</creator><creator>Dagdougui, Hanane</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1327-8004</orcidid><orcidid>https://orcid.org/0000-0001-7500-0468</orcidid><orcidid>https://orcid.org/0000-0002-3735-5062</orcidid></search><sort><creationdate>202001</creationdate><title>Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid</title><author>Ouammi, Ahmed ; Achour, Yasmine ; Zejli, Driss ; Dagdougui, Hanane</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-6831541762eeeb0da49a20ff253f684167f885787607c243a400036c5d9803cd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Advanced metering infrastructure</topic><topic>Agricultural management</topic><topic>Agriculture</topic><topic>Algorithms</topic><topic>Control systems</topic><topic>Crop production</topic><topic>Distributed generation</topic><topic>Energy management</topic><topic>Greenhouses</topic><topic>Intelligent management system</topic><topic>Meteorology</topic><topic>Microgrids</topic><topic>model predictive control (MPC)</topic><topic>Modernization</topic><topic>networked greenhouses integrated microgrid</topic><topic>Operation scheduling</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Predictive control</topic><topic>Smart grid</topic><topic>Smart grids</topic><topic>Subsystems</topic><topic>Supervisory control</topic><topic>Variation</topic><topic>Weather</topic><toplevel>online_resources</toplevel><creatorcontrib>Ouammi, Ahmed</creatorcontrib><creatorcontrib>Achour, Yasmine</creatorcontrib><creatorcontrib>Zejli, Driss</creatorcontrib><creatorcontrib>Dagdougui, Hanane</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on automation science and engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ouammi, Ahmed</au><au>Achour, Yasmine</au><au>Zejli, Driss</au><au>Dagdougui, Hanane</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid</atitle><jtitle>IEEE transactions on automation science and engineering</jtitle><stitle>TASE</stitle><date>2020-01</date><risdate>2020</risdate><volume>17</volume><issue>1</issue><spage>117</spage><epage>128</epage><pages>117-128</pages><issn>1545-5955</issn><eissn>1558-3783</eissn><coden>ITASC7</coden><abstract>This paper presents a novel high-level centralized control scheme for a smart network of greenhouses integrated microgrid (NGIM) forming a smart small power grid in the context of smart grids. The main purpose is to present an innovative control strategy-based coordinated model predictive control (MPC) that considers fluctuations of stochastic renewable sources as well as weather conditions. A comprehensive finite-horizon scheduling optimization model is formulated to optimally control the operation of the NGIM, which integrates both forecasts and newly updated information collected from the available sensors at the network level. The model can be implemented as a supervisory control and energy management system for the NGIM to manipulate the indoor climate and optimize the crop production. The cooperation is reached through a bidirectional communication infrastructure, where a master central controller is available at the network level and is in charge of coordinating and managing various control signals. An MPC-based algorithm is used for the future operation scheduling of all subsystems available in the NGIM. The MPC strategy is tested through a case study where the influences of climate data on the operation of the NGIM are analyzed via numerical results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TASE.2019.2910756</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1327-8004</orcidid><orcidid>https://orcid.org/0000-0001-7500-0468</orcidid><orcidid>https://orcid.org/0000-0002-3735-5062</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1545-5955 |
ispartof | IEEE transactions on automation science and engineering, 2020-01, Vol.17 (1), p.117-128 |
issn | 1545-5955 1558-3783 |
language | eng |
recordid | cdi_ieee_primary_8704275 |
source | IEEE Electronic Library (IEL) |
subjects | Advanced metering infrastructure Agricultural management Agriculture Algorithms Control systems Crop production Distributed generation Energy management Greenhouses Intelligent management system Meteorology Microgrids model predictive control (MPC) Modernization networked greenhouses integrated microgrid Operation scheduling Optimal control Optimization Predictive control Smart grid Smart grids Subsystems Supervisory control Variation Weather |
title | Supervisory Model Predictive Control for Optimal Energy Management of Networked Smart Greenhouses Integrated Microgrid |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T00%3A04%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervisory%20Model%20Predictive%20Control%20for%20Optimal%20Energy%20Management%20of%20Networked%20Smart%20Greenhouses%20Integrated%20Microgrid&rft.jtitle=IEEE%20transactions%20on%20automation%20science%20and%20engineering&rft.au=Ouammi,%20Ahmed&rft.date=2020-01&rft.volume=17&rft.issue=1&rft.spage=117&rft.epage=128&rft.pages=117-128&rft.issn=1545-5955&rft.eissn=1558-3783&rft.coden=ITASC7&rft_id=info:doi/10.1109/TASE.2019.2910756&rft_dat=%3Cproquest_RIE%3E2338627564%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2338627564&rft_id=info:pmid/&rft_ieee_id=8704275&rfr_iscdi=true |