Nash genetic algorithms: examples and applications
This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 516 vol.1 |
---|---|
container_issue | |
container_start_page | 509 |
container_title | |
container_volume | 1 |
creator | Sefrioui, M. Perlaux, J. |
description | This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred by their equilibrium state. This approach is tested on a few benchmark problems, and some comparisons are made with Pareto GAs, particularly in terms of speed and robustness. The different concepts presented in this paper are then illustrated via experiments on a computational fluid dynamics problem, namely nozzle reconstruction with multiple criteria (subsonic and transonic shocked flows). The overall results are that Nash genetic algorithms offer a fast and robust alternative for multiple objective optimization. |
doi_str_mv | 10.1109/CEC.2000.870339 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_870339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870339</ieee_id><sourcerecordid>870339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-df0b72b39924190fbea57a90ccd7ef563ea187129309e90c04f5c3552e0181523</originalsourceid><addsrcrecordid>eNotj8FKxDAURQMiKGPXgqv8QOtLXtM07qSMOjDoRtfDa_oyE2k7pelC_97CCBcunAsHrhD3CgqlwD0226bQAFDUFhDdlcicrWENVmiNuRFZSt_rDqUpK1vdCv1O6SSPPPISvaT-eJ7jchrSk-QfGqaek6SxkzRNffS0xPOY7sR1oD5x9t8b8fWy_Wze8v3H66553udeq3rJuwCt1S06p0vlILRMxpID7zvLwVTIpGqrtENwvGIog_FojGZQtTIaN-Lh4o3MfJjmOND8e7gcwz84-0Hj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nash genetic algorithms: examples and applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sefrioui, M. ; Perlaux, J.</creator><creatorcontrib>Sefrioui, M. ; Perlaux, J.</creatorcontrib><description>This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred by their equilibrium state. This approach is tested on a few benchmark problems, and some comparisons are made with Pareto GAs, particularly in terms of speed and robustness. The different concepts presented in this paper are then illustrated via experiments on a computational fluid dynamics problem, namely nozzle reconstruction with multiple criteria (subsonic and transonic shocked flows). The overall results are that Nash genetic algorithms offer a fast and robust alternative for multiple objective optimization.</description><identifier>ISBN: 9780780363755</identifier><identifier>ISBN: 0780363752</identifier><identifier>DOI: 10.1109/CEC.2000.870339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Game theory ; Genetic algorithms ; Merging ; Nash equilibrium ; Pareto optimization ; Robustness</subject><ispartof>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.1, p.509-516 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-df0b72b39924190fbea57a90ccd7ef563ea187129309e90c04f5c3552e0181523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/870339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sefrioui, M.</creatorcontrib><creatorcontrib>Perlaux, J.</creatorcontrib><title>Nash genetic algorithms: examples and applications</title><title>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</title><addtitle>CEC</addtitle><description>This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred by their equilibrium state. This approach is tested on a few benchmark problems, and some comparisons are made with Pareto GAs, particularly in terms of speed and robustness. The different concepts presented in this paper are then illustrated via experiments on a computational fluid dynamics problem, namely nozzle reconstruction with multiple criteria (subsonic and transonic shocked flows). The overall results are that Nash genetic algorithms offer a fast and robust alternative for multiple objective optimization.</description><subject>Benchmark testing</subject><subject>Game theory</subject><subject>Genetic algorithms</subject><subject>Merging</subject><subject>Nash equilibrium</subject><subject>Pareto optimization</subject><subject>Robustness</subject><isbn>9780780363755</isbn><isbn>0780363752</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKxDAURQMiKGPXgqv8QOtLXtM07qSMOjDoRtfDa_oyE2k7pelC_97CCBcunAsHrhD3CgqlwD0226bQAFDUFhDdlcicrWENVmiNuRFZSt_rDqUpK1vdCv1O6SSPPPISvaT-eJ7jchrSk-QfGqaek6SxkzRNffS0xPOY7sR1oD5x9t8b8fWy_Wze8v3H66553udeq3rJuwCt1S06p0vlILRMxpID7zvLwVTIpGqrtENwvGIog_FojGZQtTIaN-Lh4o3MfJjmOND8e7gcwz84-0Hj</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Sefrioui, M.</creator><creator>Perlaux, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Nash genetic algorithms: examples and applications</title><author>Sefrioui, M. ; Perlaux, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-df0b72b39924190fbea57a90ccd7ef563ea187129309e90c04f5c3552e0181523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Benchmark testing</topic><topic>Game theory</topic><topic>Genetic algorithms</topic><topic>Merging</topic><topic>Nash equilibrium</topic><topic>Pareto optimization</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Sefrioui, M.</creatorcontrib><creatorcontrib>Perlaux, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sefrioui, M.</au><au>Perlaux, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nash genetic algorithms: examples and applications</atitle><btitle>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</btitle><stitle>CEC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>509</spage><epage>516 vol.1</epage><pages>509-516 vol.1</pages><isbn>9780780363755</isbn><isbn>0780363752</isbn><abstract>This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred by their equilibrium state. This approach is tested on a few benchmark problems, and some comparisons are made with Pareto GAs, particularly in terms of speed and robustness. The different concepts presented in this paper are then illustrated via experiments on a computational fluid dynamics problem, namely nozzle reconstruction with multiple criteria (subsonic and transonic shocked flows). The overall results are that Nash genetic algorithms offer a fast and robust alternative for multiple objective optimization.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2000.870339</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780363755 |
ispartof | Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.1, p.509-516 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_870339 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Benchmark testing Game theory Genetic algorithms Merging Nash equilibrium Pareto optimization Robustness |
title | Nash genetic algorithms: examples and applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nash%20genetic%20algorithms:%20examples%20and%20applications&rft.btitle=Proceedings%20of%20the%202000%20Congress%20on%20Evolutionary%20Computation.%20CEC00%20(Cat.%20No.00TH8512)&rft.au=Sefrioui,%20M.&rft.date=2000&rft.volume=1&rft.spage=509&rft.epage=516%20vol.1&rft.pages=509-516%20vol.1&rft.isbn=9780780363755&rft.isbn_list=0780363752&rft_id=info:doi/10.1109/CEC.2000.870339&rft_dat=%3Cieee_6IE%3E870339%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=870339&rfr_iscdi=true |