Nash genetic algorithms: examples and applications

This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sefrioui, M., Perlaux, J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 516 vol.1
container_issue
container_start_page 509
container_title
container_volume 1
creator Sefrioui, M.
Perlaux, J.
description This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred by their equilibrium state. This approach is tested on a few benchmark problems, and some comparisons are made with Pareto GAs, particularly in terms of speed and robustness. The different concepts presented in this paper are then illustrated via experiments on a computational fluid dynamics problem, namely nozzle reconstruction with multiple criteria (subsonic and transonic shocked flows). The overall results are that Nash genetic algorithms offer a fast and robust alternative for multiple objective optimization.
doi_str_mv 10.1109/CEC.2000.870339
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_870339</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870339</ieee_id><sourcerecordid>870339</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-df0b72b39924190fbea57a90ccd7ef563ea187129309e90c04f5c3552e0181523</originalsourceid><addsrcrecordid>eNotj8FKxDAURQMiKGPXgqv8QOtLXtM07qSMOjDoRtfDa_oyE2k7pelC_97CCBcunAsHrhD3CgqlwD0226bQAFDUFhDdlcicrWENVmiNuRFZSt_rDqUpK1vdCv1O6SSPPPISvaT-eJ7jchrSk-QfGqaek6SxkzRNffS0xPOY7sR1oD5x9t8b8fWy_Wze8v3H66553udeq3rJuwCt1S06p0vlILRMxpID7zvLwVTIpGqrtENwvGIog_FojGZQtTIaN-Lh4o3MfJjmOND8e7gcwz84-0Hj</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Nash genetic algorithms: examples and applications</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sefrioui, M. ; Perlaux, J.</creator><creatorcontrib>Sefrioui, M. ; Perlaux, J.</creatorcontrib><description>This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred by their equilibrium state. This approach is tested on a few benchmark problems, and some comparisons are made with Pareto GAs, particularly in terms of speed and robustness. The different concepts presented in this paper are then illustrated via experiments on a computational fluid dynamics problem, namely nozzle reconstruction with multiple criteria (subsonic and transonic shocked flows). The overall results are that Nash genetic algorithms offer a fast and robust alternative for multiple objective optimization.</description><identifier>ISBN: 9780780363755</identifier><identifier>ISBN: 0780363752</identifier><identifier>DOI: 10.1109/CEC.2000.870339</identifier><language>eng</language><publisher>IEEE</publisher><subject>Benchmark testing ; Game theory ; Genetic algorithms ; Merging ; Nash equilibrium ; Pareto optimization ; Robustness</subject><ispartof>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.1, p.509-516 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-df0b72b39924190fbea57a90ccd7ef563ea187129309e90c04f5c3552e0181523</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870339$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/870339$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sefrioui, M.</creatorcontrib><creatorcontrib>Perlaux, J.</creatorcontrib><title>Nash genetic algorithms: examples and applications</title><title>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</title><addtitle>CEC</addtitle><description>This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred by their equilibrium state. This approach is tested on a few benchmark problems, and some comparisons are made with Pareto GAs, particularly in terms of speed and robustness. The different concepts presented in this paper are then illustrated via experiments on a computational fluid dynamics problem, namely nozzle reconstruction with multiple criteria (subsonic and transonic shocked flows). The overall results are that Nash genetic algorithms offer a fast and robust alternative for multiple objective optimization.</description><subject>Benchmark testing</subject><subject>Game theory</subject><subject>Genetic algorithms</subject><subject>Merging</subject><subject>Nash equilibrium</subject><subject>Pareto optimization</subject><subject>Robustness</subject><isbn>9780780363755</isbn><isbn>0780363752</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj8FKxDAURQMiKGPXgqv8QOtLXtM07qSMOjDoRtfDa_oyE2k7pelC_97CCBcunAsHrhD3CgqlwD0226bQAFDUFhDdlcicrWENVmiNuRFZSt_rDqUpK1vdCv1O6SSPPPISvaT-eJ7jchrSk-QfGqaek6SxkzRNffS0xPOY7sR1oD5x9t8b8fWy_Wze8v3H66553udeq3rJuwCt1S06p0vlILRMxpID7zvLwVTIpGqrtENwvGIog_FojGZQtTIaN-Lh4o3MfJjmOND8e7gcwz84-0Hj</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Sefrioui, M.</creator><creator>Perlaux, J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Nash genetic algorithms: examples and applications</title><author>Sefrioui, M. ; Perlaux, J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-df0b72b39924190fbea57a90ccd7ef563ea187129309e90c04f5c3552e0181523</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Benchmark testing</topic><topic>Game theory</topic><topic>Genetic algorithms</topic><topic>Merging</topic><topic>Nash equilibrium</topic><topic>Pareto optimization</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Sefrioui, M.</creatorcontrib><creatorcontrib>Perlaux, J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sefrioui, M.</au><au>Perlaux, J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Nash genetic algorithms: examples and applications</atitle><btitle>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</btitle><stitle>CEC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>509</spage><epage>516 vol.1</epage><pages>509-516 vol.1</pages><isbn>9780780363755</isbn><isbn>0780363752</isbn><abstract>This article presents both theoretical aspects and experimental results for Nash genetic algorithms. Nash GAs are an alternative for multiple objective optimization as they are an optimization tool based on noncooperative game theory. They are explained in detail, along with the advantages conferred by their equilibrium state. This approach is tested on a few benchmark problems, and some comparisons are made with Pareto GAs, particularly in terms of speed and robustness. The different concepts presented in this paper are then illustrated via experiments on a computational fluid dynamics problem, namely nozzle reconstruction with multiple criteria (subsonic and transonic shocked flows). The overall results are that Nash genetic algorithms offer a fast and robust alternative for multiple objective optimization.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2000.870339</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780363755
ispartof Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.1, p.509-516 vol.1
issn
language eng
recordid cdi_ieee_primary_870339
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Benchmark testing
Game theory
Genetic algorithms
Merging
Nash equilibrium
Pareto optimization
Robustness
title Nash genetic algorithms: examples and applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T00%3A29%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Nash%20genetic%20algorithms:%20examples%20and%20applications&rft.btitle=Proceedings%20of%20the%202000%20Congress%20on%20Evolutionary%20Computation.%20CEC00%20(Cat.%20No.00TH8512)&rft.au=Sefrioui,%20M.&rft.date=2000&rft.volume=1&rft.spage=509&rft.epage=516%20vol.1&rft.pages=509-516%20vol.1&rft.isbn=9780780363755&rft.isbn_list=0780363752&rft_id=info:doi/10.1109/CEC.2000.870339&rft_dat=%3Cieee_6IE%3E870339%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=870339&rfr_iscdi=true