M-PAES: a memetic algorithm for multiobjective optimization

A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAE...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Knowles, J.D., Corne, D.W.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 332 vol.1
container_issue
container_start_page 325
container_title
container_volume 1
creator Knowles, J.D.
Corne, D.W.
description A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAES) algorithm is carried out by testing it on a set of multiobjective 0/1 knapsack problems. On each problem instance, a comparison is made between the new memetic algorithm, the (1+1)-PAES local searcher, and the strength Pareto evolutionary algorithm (SPEA) of E. Zitzler and L. Thiele (1998, 1999).
doi_str_mv 10.1109/CEC.2000.870313
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_870313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870313</ieee_id><sourcerecordid>870313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-12fe47c76b080666339520898754d972f80f5aab68c10bbbe9c14cc315a854673</originalsourceid><addsrcrecordid>eNotj99LwzAcxAMiKLPPgk_5B1q_-Z3o0yjVCZMN1OeRxEQzGjvaKOhfb2XCwcF94LhD6JJAQwiY67ZrGwoAjVbACDtBlVEaZjHJlBBnqJqm_cyBCy6VPEe3j_V22T3dYItzyKEkj23_NoypvGcchxHnz76kwe2DL-kr4OFQUk4_ds4-LtBptP0Uqn9foJe77rld1evN_UO7XNeeEl1qQmPgyivpQIOUkjEjKGijleCvRtGoIQprndSegHMuGE-494wIq_9WsgW6OvamEMLuMKZsx-_d8SH7BXNmRHY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>M-PAES: a memetic algorithm for multiobjective optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Knowles, J.D. ; Corne, D.W.</creator><creatorcontrib>Knowles, J.D. ; Corne, D.W.</creatorcontrib><description>A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAES) algorithm is carried out by testing it on a set of multiobjective 0/1 knapsack problems. On each problem instance, a comparison is made between the new memetic algorithm, the (1+1)-PAES local searcher, and the strength Pareto evolutionary algorithm (SPEA) of E. Zitzler and L. Thiele (1998, 1999).</description><identifier>ISBN: 9780780363755</identifier><identifier>ISBN: 0780363752</identifier><identifier>DOI: 10.1109/CEC.2000.870313</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Computer science ; Convergence ; Cybernetics ; Decision making ; Evolutionary computation ; Genetic algorithms ; Operations research ; Simulated annealing ; Testing</subject><ispartof>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.1, p.325-332 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-12fe47c76b080666339520898754d972f80f5aab68c10bbbe9c14cc315a854673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/870313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Knowles, J.D.</creatorcontrib><creatorcontrib>Corne, D.W.</creatorcontrib><title>M-PAES: a memetic algorithm for multiobjective optimization</title><title>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</title><addtitle>CEC</addtitle><description>A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAES) algorithm is carried out by testing it on a set of multiobjective 0/1 knapsack problems. On each problem instance, a comparison is made between the new memetic algorithm, the (1+1)-PAES local searcher, and the strength Pareto evolutionary algorithm (SPEA) of E. Zitzler and L. Thiele (1998, 1999).</description><subject>Aggregates</subject><subject>Computer science</subject><subject>Convergence</subject><subject>Cybernetics</subject><subject>Decision making</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Operations research</subject><subject>Simulated annealing</subject><subject>Testing</subject><isbn>9780780363755</isbn><isbn>0780363752</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj99LwzAcxAMiKLPPgk_5B1q_-Z3o0yjVCZMN1OeRxEQzGjvaKOhfb2XCwcF94LhD6JJAQwiY67ZrGwoAjVbACDtBlVEaZjHJlBBnqJqm_cyBCy6VPEe3j_V22T3dYItzyKEkj23_NoypvGcchxHnz76kwe2DL-kr4OFQUk4_ds4-LtBptP0Uqn9foJe77rld1evN_UO7XNeeEl1qQmPgyivpQIOUkjEjKGijleCvRtGoIQprndSegHMuGE-494wIq_9WsgW6OvamEMLuMKZsx-_d8SH7BXNmRHY</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Knowles, J.D.</creator><creator>Corne, D.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>M-PAES: a memetic algorithm for multiobjective optimization</title><author>Knowles, J.D. ; Corne, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-12fe47c76b080666339520898754d972f80f5aab68c10bbbe9c14cc315a854673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aggregates</topic><topic>Computer science</topic><topic>Convergence</topic><topic>Cybernetics</topic><topic>Decision making</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Operations research</topic><topic>Simulated annealing</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Knowles, J.D.</creatorcontrib><creatorcontrib>Corne, D.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knowles, J.D.</au><au>Corne, D.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>M-PAES: a memetic algorithm for multiobjective optimization</atitle><btitle>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</btitle><stitle>CEC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>325</spage><epage>332 vol.1</epage><pages>325-332 vol.1</pages><isbn>9780780363755</isbn><isbn>0780363752</isbn><abstract>A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAES) algorithm is carried out by testing it on a set of multiobjective 0/1 knapsack problems. On each problem instance, a comparison is made between the new memetic algorithm, the (1+1)-PAES local searcher, and the strength Pareto evolutionary algorithm (SPEA) of E. Zitzler and L. Thiele (1998, 1999).</abstract><pub>IEEE</pub><doi>10.1109/CEC.2000.870313</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780363755
ispartof Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.1, p.325-332 vol.1
issn
language eng
recordid cdi_ieee_primary_870313
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregates
Computer science
Convergence
Cybernetics
Decision making
Evolutionary computation
Genetic algorithms
Operations research
Simulated annealing
Testing
title M-PAES: a memetic algorithm for multiobjective optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=M-PAES:%20a%20memetic%20algorithm%20for%20multiobjective%20optimization&rft.btitle=Proceedings%20of%20the%202000%20Congress%20on%20Evolutionary%20Computation.%20CEC00%20(Cat.%20No.00TH8512)&rft.au=Knowles,%20J.D.&rft.date=2000&rft.volume=1&rft.spage=325&rft.epage=332%20vol.1&rft.pages=325-332%20vol.1&rft.isbn=9780780363755&rft.isbn_list=0780363752&rft_id=info:doi/10.1109/CEC.2000.870313&rft_dat=%3Cieee_6IE%3E870313%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=870313&rfr_iscdi=true