M-PAES: a memetic algorithm for multiobjective optimization
A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAE...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 332 vol.1 |
---|---|
container_issue | |
container_start_page | 325 |
container_title | |
container_volume | 1 |
creator | Knowles, J.D. Corne, D.W. |
description | A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAES) algorithm is carried out by testing it on a set of multiobjective 0/1 knapsack problems. On each problem instance, a comparison is made between the new memetic algorithm, the (1+1)-PAES local searcher, and the strength Pareto evolutionary algorithm (SPEA) of E. Zitzler and L. Thiele (1998, 1999). |
doi_str_mv | 10.1109/CEC.2000.870313 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_870313</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>870313</ieee_id><sourcerecordid>870313</sourcerecordid><originalsourceid>FETCH-LOGICAL-c218t-12fe47c76b080666339520898754d972f80f5aab68c10bbbe9c14cc315a854673</originalsourceid><addsrcrecordid>eNotj99LwzAcxAMiKLPPgk_5B1q_-Z3o0yjVCZMN1OeRxEQzGjvaKOhfb2XCwcF94LhD6JJAQwiY67ZrGwoAjVbACDtBlVEaZjHJlBBnqJqm_cyBCy6VPEe3j_V22T3dYItzyKEkj23_NoypvGcchxHnz76kwe2DL-kr4OFQUk4_ds4-LtBptP0Uqn9foJe77rld1evN_UO7XNeeEl1qQmPgyivpQIOUkjEjKGijleCvRtGoIQprndSegHMuGE-494wIq_9WsgW6OvamEMLuMKZsx-_d8SH7BXNmRHY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>M-PAES: a memetic algorithm for multiobjective optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Knowles, J.D. ; Corne, D.W.</creator><creatorcontrib>Knowles, J.D. ; Corne, D.W.</creatorcontrib><description>A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAES) algorithm is carried out by testing it on a set of multiobjective 0/1 knapsack problems. On each problem instance, a comparison is made between the new memetic algorithm, the (1+1)-PAES local searcher, and the strength Pareto evolutionary algorithm (SPEA) of E. Zitzler and L. Thiele (1998, 1999).</description><identifier>ISBN: 9780780363755</identifier><identifier>ISBN: 0780363752</identifier><identifier>DOI: 10.1109/CEC.2000.870313</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Computer science ; Convergence ; Cybernetics ; Decision making ; Evolutionary computation ; Genetic algorithms ; Operations research ; Simulated annealing ; Testing</subject><ispartof>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.1, p.325-332 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c218t-12fe47c76b080666339520898754d972f80f5aab68c10bbbe9c14cc315a854673</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/870313$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/870313$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Knowles, J.D.</creatorcontrib><creatorcontrib>Corne, D.W.</creatorcontrib><title>M-PAES: a memetic algorithm for multiobjective optimization</title><title>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</title><addtitle>CEC</addtitle><description>A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAES) algorithm is carried out by testing it on a set of multiobjective 0/1 knapsack problems. On each problem instance, a comparison is made between the new memetic algorithm, the (1+1)-PAES local searcher, and the strength Pareto evolutionary algorithm (SPEA) of E. Zitzler and L. Thiele (1998, 1999).</description><subject>Aggregates</subject><subject>Computer science</subject><subject>Convergence</subject><subject>Cybernetics</subject><subject>Decision making</subject><subject>Evolutionary computation</subject><subject>Genetic algorithms</subject><subject>Operations research</subject><subject>Simulated annealing</subject><subject>Testing</subject><isbn>9780780363755</isbn><isbn>0780363752</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj99LwzAcxAMiKLPPgk_5B1q_-Z3o0yjVCZMN1OeRxEQzGjvaKOhfb2XCwcF94LhD6JJAQwiY67ZrGwoAjVbACDtBlVEaZjHJlBBnqJqm_cyBCy6VPEe3j_V22T3dYItzyKEkj23_NoypvGcchxHnz76kwe2DL-kr4OFQUk4_ds4-LtBptP0Uqn9foJe77rld1evN_UO7XNeeEl1qQmPgyivpQIOUkjEjKGijleCvRtGoIQprndSegHMuGE-494wIq_9WsgW6OvamEMLuMKZsx-_d8SH7BXNmRHY</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Knowles, J.D.</creator><creator>Corne, D.W.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>M-PAES: a memetic algorithm for multiobjective optimization</title><author>Knowles, J.D. ; Corne, D.W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c218t-12fe47c76b080666339520898754d972f80f5aab68c10bbbe9c14cc315a854673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aggregates</topic><topic>Computer science</topic><topic>Convergence</topic><topic>Cybernetics</topic><topic>Decision making</topic><topic>Evolutionary computation</topic><topic>Genetic algorithms</topic><topic>Operations research</topic><topic>Simulated annealing</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Knowles, J.D.</creatorcontrib><creatorcontrib>Corne, D.W.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knowles, J.D.</au><au>Corne, D.W.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>M-PAES: a memetic algorithm for multiobjective optimization</atitle><btitle>Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)</btitle><stitle>CEC</stitle><date>2000</date><risdate>2000</risdate><volume>1</volume><spage>325</spage><epage>332 vol.1</epage><pages>325-332 vol.1</pages><isbn>9780780363755</isbn><isbn>0780363752</isbn><abstract>A memetic algorithm for tackling multiobjective optimization problems is presented. The algorithm employs the proven local search strategy used in the Pareto archived evolution strategy (PAES) and combines it with the use of a population and recombination. Verification of the new M-PAES (memetic PAES) algorithm is carried out by testing it on a set of multiobjective 0/1 knapsack problems. On each problem instance, a comparison is made between the new memetic algorithm, the (1+1)-PAES local searcher, and the strength Pareto evolutionary algorithm (SPEA) of E. Zitzler and L. Thiele (1998, 1999).</abstract><pub>IEEE</pub><doi>10.1109/CEC.2000.870313</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780363755 |
ispartof | Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512), 2000, Vol.1, p.325-332 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_870313 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aggregates Computer science Convergence Cybernetics Decision making Evolutionary computation Genetic algorithms Operations research Simulated annealing Testing |
title | M-PAES: a memetic algorithm for multiobjective optimization |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T21%3A45%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=M-PAES:%20a%20memetic%20algorithm%20for%20multiobjective%20optimization&rft.btitle=Proceedings%20of%20the%202000%20Congress%20on%20Evolutionary%20Computation.%20CEC00%20(Cat.%20No.00TH8512)&rft.au=Knowles,%20J.D.&rft.date=2000&rft.volume=1&rft.spage=325&rft.epage=332%20vol.1&rft.pages=325-332%20vol.1&rft.isbn=9780780363755&rft.isbn_list=0780363752&rft_id=info:doi/10.1109/CEC.2000.870313&rft_dat=%3Cieee_6IE%3E870313%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=870313&rfr_iscdi=true |