A tool for nesting and clustering large objects

In implementations of non-standard database systems, large objects are often embedded within an aggregate of different types, i.e. a tuple. For a given size and access probability of a large object, query performance depends on its representation: either inlined within the aggregate or swapped out t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dieker, S., Hartmut Guting, R., Luaces, M.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 181
container_issue
container_start_page 169
container_title
container_volume
creator Dieker, S.
Hartmut Guting, R.
Luaces, M.
description In implementations of non-standard database systems, large objects are often embedded within an aggregate of different types, i.e. a tuple. For a given size and access probability of a large object, query performance depends on its representation: either inlined within the aggregate or swapped out to a separate object. Furthermore, the implementation of complex data models often requires nested large objects, and access performance is highly influenced by the clustering strategy followed to store the resulting tree of large objects. In this paper we describe a large object extension which automatically clusters nested large objects. A rank function is developed which indicates the suitability of a large object being inserted into a given cluster. We present two clustering algorithms of different run-time complexity, both using the rank function, and a series of simulations is performed to compare them to each other as well as to two trivial ones. One of the algorithms proves to compute the most efficient clustering in all tests.
doi_str_mv 10.1109/SSDM.2000.869786
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_869786</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>869786</ieee_id><sourcerecordid>869786</sourcerecordid><originalsourceid>FETCH-ieee_primary_8697863</originalsourceid><addsrcrecordid>eNp9jr0OgjAURm-iJoK6G6e-AHBLY6Gj8ScuTrgTxAuBVGraOvj2anR2-nJyzvABLDnGnKNKimJ3ilNEjHOpslyOIMRMqjXKXOIYgnejIiEyPoXQuR4xRaFEAMmGeWM0a4xlAznfDS2rhiur9cN5sh_UlW2JmUtPtXdzmDSVdrT47QxWh_15e4w6IirvtrtV9ll-P4i_8gUUJDMe</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A tool for nesting and clustering large objects</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dieker, S. ; Hartmut Guting, R. ; Luaces, M.</creator><creatorcontrib>Dieker, S. ; Hartmut Guting, R. ; Luaces, M.</creatorcontrib><description>In implementations of non-standard database systems, large objects are often embedded within an aggregate of different types, i.e. a tuple. For a given size and access probability of a large object, query performance depends on its representation: either inlined within the aggregate or swapped out to a separate object. Furthermore, the implementation of complex data models often requires nested large objects, and access performance is highly influenced by the clustering strategy followed to store the resulting tree of large objects. In this paper we describe a large object extension which automatically clusters nested large objects. A rank function is developed which indicates the suitability of a large object being inserted into a given cluster. We present two clustering algorithms of different run-time complexity, both using the rank function, and a series of simulations is performed to compare them to each other as well as to two trivial ones. One of the algorithms proves to compute the most efficient clustering in all tests.</description><identifier>ISSN: 1099-3371</identifier><identifier>ISBN: 0769506860</identifier><identifier>ISBN: 9780769506869</identifier><identifier>DOI: 10.1109/SSDM.2000.869786</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aggregates ; Clustering algorithms ; Computational modeling ; Data models ; Database systems ; Indexing ; Object oriented modeling ; Packaging ; Runtime ; Testing</subject><ispartof>Proceedings. 12th International Conference on Scientific and Statistica Database Management, 2000, p.169-181</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/869786$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,4035,4036,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/869786$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dieker, S.</creatorcontrib><creatorcontrib>Hartmut Guting, R.</creatorcontrib><creatorcontrib>Luaces, M.</creatorcontrib><title>A tool for nesting and clustering large objects</title><title>Proceedings. 12th International Conference on Scientific and Statistica Database Management</title><addtitle>SSDM</addtitle><description>In implementations of non-standard database systems, large objects are often embedded within an aggregate of different types, i.e. a tuple. For a given size and access probability of a large object, query performance depends on its representation: either inlined within the aggregate or swapped out to a separate object. Furthermore, the implementation of complex data models often requires nested large objects, and access performance is highly influenced by the clustering strategy followed to store the resulting tree of large objects. In this paper we describe a large object extension which automatically clusters nested large objects. A rank function is developed which indicates the suitability of a large object being inserted into a given cluster. We present two clustering algorithms of different run-time complexity, both using the rank function, and a series of simulations is performed to compare them to each other as well as to two trivial ones. One of the algorithms proves to compute the most efficient clustering in all tests.</description><subject>Aggregates</subject><subject>Clustering algorithms</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Database systems</subject><subject>Indexing</subject><subject>Object oriented modeling</subject><subject>Packaging</subject><subject>Runtime</subject><subject>Testing</subject><issn>1099-3371</issn><isbn>0769506860</isbn><isbn>9780769506869</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9jr0OgjAURm-iJoK6G6e-AHBLY6Gj8ScuTrgTxAuBVGraOvj2anR2-nJyzvABLDnGnKNKimJ3ilNEjHOpslyOIMRMqjXKXOIYgnejIiEyPoXQuR4xRaFEAMmGeWM0a4xlAznfDS2rhiur9cN5sh_UlW2JmUtPtXdzmDSVdrT47QxWh_15e4w6IirvtrtV9ll-P4i_8gUUJDMe</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Dieker, S.</creator><creator>Hartmut Guting, R.</creator><creator>Luaces, M.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>A tool for nesting and clustering large objects</title><author>Dieker, S. ; Hartmut Guting, R. ; Luaces, M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8697863</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Aggregates</topic><topic>Clustering algorithms</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Database systems</topic><topic>Indexing</topic><topic>Object oriented modeling</topic><topic>Packaging</topic><topic>Runtime</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Dieker, S.</creatorcontrib><creatorcontrib>Hartmut Guting, R.</creatorcontrib><creatorcontrib>Luaces, M.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dieker, S.</au><au>Hartmut Guting, R.</au><au>Luaces, M.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A tool for nesting and clustering large objects</atitle><btitle>Proceedings. 12th International Conference on Scientific and Statistica Database Management</btitle><stitle>SSDM</stitle><date>2000</date><risdate>2000</risdate><spage>169</spage><epage>181</epage><pages>169-181</pages><issn>1099-3371</issn><isbn>0769506860</isbn><isbn>9780769506869</isbn><abstract>In implementations of non-standard database systems, large objects are often embedded within an aggregate of different types, i.e. a tuple. For a given size and access probability of a large object, query performance depends on its representation: either inlined within the aggregate or swapped out to a separate object. Furthermore, the implementation of complex data models often requires nested large objects, and access performance is highly influenced by the clustering strategy followed to store the resulting tree of large objects. In this paper we describe a large object extension which automatically clusters nested large objects. A rank function is developed which indicates the suitability of a large object being inserted into a given cluster. We present two clustering algorithms of different run-time complexity, both using the rank function, and a series of simulations is performed to compare them to each other as well as to two trivial ones. One of the algorithms proves to compute the most efficient clustering in all tests.</abstract><pub>IEEE</pub><doi>10.1109/SSDM.2000.869786</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1099-3371
ispartof Proceedings. 12th International Conference on Scientific and Statistica Database Management, 2000, p.169-181
issn 1099-3371
language eng
recordid cdi_ieee_primary_869786
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aggregates
Clustering algorithms
Computational modeling
Data models
Database systems
Indexing
Object oriented modeling
Packaging
Runtime
Testing
title A tool for nesting and clustering large objects
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T15%3A01%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20tool%20for%20nesting%20and%20clustering%20large%20objects&rft.btitle=Proceedings.%2012th%20International%20Conference%20on%20Scientific%20and%20Statistica%20Database%20Management&rft.au=Dieker,%20S.&rft.date=2000&rft.spage=169&rft.epage=181&rft.pages=169-181&rft.issn=1099-3371&rft.isbn=0769506860&rft.isbn_list=9780769506869&rft_id=info:doi/10.1109/SSDM.2000.869786&rft_dat=%3Cieee_6IE%3E869786%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=869786&rfr_iscdi=true