New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms

This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE signal processing letters 2019-06, Vol.26 (6), p.923-927
Hauptverfasser: Ramirez-Espinosa, Pablo, Morales-Jimenez, David, Cortes, Jose A., Paris, Jose F., Martos-Naya, Eduardo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 927
container_issue 6
container_start_page 923
container_title IEEE signal processing letters
container_volume 26
creator Ramirez-Espinosa, Pablo
Morales-Jimenez, David
Cortes, Jose A.
Paris, Jose F.
Martos-Naya, Eduardo
description This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables which converges in distribution to the target variable. By leveraging such convergence, simple approximations for both the CDF and PDF of the target variable are given in terms of the derivatives of its moment generating function (MGF). In contrast to classical approximation methods based on truncated series of moments or cumulants, our approximations always represent a valid distribution and the relative error between variables is independent of the variable under analysis. The derived results are then used to approximate the statistics of positive-definite real Gaussian quadratic forms, comparing our proposed approach with other existing approximations in the literature.
doi_str_mv 10.1109/LSP.2019.2912295
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8693955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693955</ieee_id><sourcerecordid>2222215101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6667a7c1390292ff2fedbb49b0b0a672693d90bbcf0f727ac7893aad628bf7873</originalsourceid><addsrcrecordid>eNo9kMtLAzEQxoMoWKt3wcuC562TxM3jWKqtQtH6qNeQ7CaQ0jY12fXx35u14lxmBn7fPD6EzjGMMAZ5NX9ZjAhgOSISEyKrAzTAVSVKQhk-zDVwKKUEcYxOUloBgMCiGqDlg_0sxrtdDF9-o1sftkUbihuf2uhN99sHVyxC8q3_sMXzW-rptbdNz810l5LX2-Kp003M8rqYhrhJp-jI6XWyZ395iJbT29fJXTl_nN1PxvOyppS2JWOMa15jKoFI4hxxtjHmWhowoBknTNJGgjG1A8cJ1zUXkmrdMCKM44LTIbrcz833v3c2tWoVurjNKxXpA1cYcKZgT9UxpBStU7uYn43fCoPqzVPZPNWbp_7My5KLvcRba_9xkQ-SVUV_AN8-auk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222215101</pqid></control><display><type>article</type><title>New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms</title><source>IEEE Electronic Library (IEL)</source><creator>Ramirez-Espinosa, Pablo ; Morales-Jimenez, David ; Cortes, Jose A. ; Paris, Jose F. ; Martos-Naya, Eduardo</creator><creatorcontrib>Ramirez-Espinosa, Pablo ; Morales-Jimenez, David ; Cortes, Jose A. ; Paris, Jose F. ; Martos-Naya, Eduardo</creatorcontrib><description>This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables which converges in distribution to the target variable. By leveraging such convergence, simple approximations for both the CDF and PDF of the target variable are given in terms of the derivatives of its moment generating function (MGF). In contrast to classical approximation methods based on truncated series of moments or cumulants, our approximations always represent a valid distribution and the relative error between variables is independent of the variable under analysis. The derived results are then used to approximate the statistics of positive-definite real Gaussian quadratic forms, comparing our proposed approach with other existing approximations in the literature.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2019.2912295</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Closed-form solutions ; Convergence ; Distribution functions ; Economic models ; Gaussian quadratic forms ; Independent variables ; Mathematical analysis ; Performance analysis ; Probability density function ; Probability density functions ; Quadratic forms ; Random variables ; signal detection ; Signal processing ; statistical distributions</subject><ispartof>IEEE signal processing letters, 2019-06, Vol.26 (6), p.923-927</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6667a7c1390292ff2fedbb49b0b0a672693d90bbcf0f727ac7893aad628bf7873</citedby><cites>FETCH-LOGICAL-c333t-6667a7c1390292ff2fedbb49b0b0a672693d90bbcf0f727ac7893aad628bf7873</cites><orcidid>0000-0001-6514-5057 ; 0000-0002-2141-7185 ; 0000-0003-1161-0747 ; 0000-0001-5094-7735 ; 0000-0002-3914-8921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8693955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramirez-Espinosa, Pablo</creatorcontrib><creatorcontrib>Morales-Jimenez, David</creatorcontrib><creatorcontrib>Cortes, Jose A.</creatorcontrib><creatorcontrib>Paris, Jose F.</creatorcontrib><creatorcontrib>Martos-Naya, Eduardo</creatorcontrib><title>New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables which converges in distribution to the target variable. By leveraging such convergence, simple approximations for both the CDF and PDF of the target variable are given in terms of the derivatives of its moment generating function (MGF). In contrast to classical approximation methods based on truncated series of moments or cumulants, our approximations always represent a valid distribution and the relative error between variables is independent of the variable under analysis. The derived results are then used to approximate the statistics of positive-definite real Gaussian quadratic forms, comparing our proposed approach with other existing approximations in the literature.</description><subject>Approximation</subject><subject>Closed-form solutions</subject><subject>Convergence</subject><subject>Distribution functions</subject><subject>Economic models</subject><subject>Gaussian quadratic forms</subject><subject>Independent variables</subject><subject>Mathematical analysis</subject><subject>Performance analysis</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Quadratic forms</subject><subject>Random variables</subject><subject>signal detection</subject><subject>Signal processing</subject><subject>statistical distributions</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLAzEQxoMoWKt3wcuC562TxM3jWKqtQtH6qNeQ7CaQ0jY12fXx35u14lxmBn7fPD6EzjGMMAZ5NX9ZjAhgOSISEyKrAzTAVSVKQhk-zDVwKKUEcYxOUloBgMCiGqDlg_0sxrtdDF9-o1sftkUbihuf2uhN99sHVyxC8q3_sMXzW-rptbdNz810l5LX2-Kp003M8rqYhrhJp-jI6XWyZ395iJbT29fJXTl_nN1PxvOyppS2JWOMa15jKoFI4hxxtjHmWhowoBknTNJGgjG1A8cJ1zUXkmrdMCKM44LTIbrcz833v3c2tWoVurjNKxXpA1cYcKZgT9UxpBStU7uYn43fCoPqzVPZPNWbp_7My5KLvcRba_9xkQ-SVUV_AN8-auk</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ramirez-Espinosa, Pablo</creator><creator>Morales-Jimenez, David</creator><creator>Cortes, Jose A.</creator><creator>Paris, Jose F.</creator><creator>Martos-Naya, Eduardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6514-5057</orcidid><orcidid>https://orcid.org/0000-0002-2141-7185</orcidid><orcidid>https://orcid.org/0000-0003-1161-0747</orcidid><orcidid>https://orcid.org/0000-0001-5094-7735</orcidid><orcidid>https://orcid.org/0000-0002-3914-8921</orcidid></search><sort><creationdate>20190601</creationdate><title>New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms</title><author>Ramirez-Espinosa, Pablo ; Morales-Jimenez, David ; Cortes, Jose A. ; Paris, Jose F. ; Martos-Naya, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6667a7c1390292ff2fedbb49b0b0a672693d90bbcf0f727ac7893aad628bf7873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Closed-form solutions</topic><topic>Convergence</topic><topic>Distribution functions</topic><topic>Economic models</topic><topic>Gaussian quadratic forms</topic><topic>Independent variables</topic><topic>Mathematical analysis</topic><topic>Performance analysis</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Quadratic forms</topic><topic>Random variables</topic><topic>signal detection</topic><topic>Signal processing</topic><topic>statistical distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Espinosa, Pablo</creatorcontrib><creatorcontrib>Morales-Jimenez, David</creatorcontrib><creatorcontrib>Cortes, Jose A.</creatorcontrib><creatorcontrib>Paris, Jose F.</creatorcontrib><creatorcontrib>Martos-Naya, Eduardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramirez-Espinosa, Pablo</au><au>Morales-Jimenez, David</au><au>Cortes, Jose A.</au><au>Paris, Jose F.</au><au>Martos-Naya, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>26</volume><issue>6</issue><spage>923</spage><epage>927</epage><pages>923-927</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables which converges in distribution to the target variable. By leveraging such convergence, simple approximations for both the CDF and PDF of the target variable are given in terms of the derivatives of its moment generating function (MGF). In contrast to classical approximation methods based on truncated series of moments or cumulants, our approximations always represent a valid distribution and the relative error between variables is independent of the variable under analysis. The derived results are then used to approximate the statistics of positive-definite real Gaussian quadratic forms, comparing our proposed approach with other existing approximations in the literature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2019.2912295</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6514-5057</orcidid><orcidid>https://orcid.org/0000-0002-2141-7185</orcidid><orcidid>https://orcid.org/0000-0003-1161-0747</orcidid><orcidid>https://orcid.org/0000-0001-5094-7735</orcidid><orcidid>https://orcid.org/0000-0002-3914-8921</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1070-9908
ispartof IEEE signal processing letters, 2019-06, Vol.26 (6), p.923-927
issn 1070-9908
1558-2361
language eng
recordid cdi_ieee_primary_8693955
source IEEE Electronic Library (IEL)
subjects Approximation
Closed-form solutions
Convergence
Distribution functions
Economic models
Gaussian quadratic forms
Independent variables
Mathematical analysis
Performance analysis
Probability density function
Probability density functions
Quadratic forms
Random variables
signal detection
Signal processing
statistical distributions
title New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Approximation%20to%20Distribution%20of%20Positive%20RVs%20Applied%20to%20Gaussian%20Quadratic%20Forms&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Ramirez-Espinosa,%20Pablo&rft.date=2019-06-01&rft.volume=26&rft.issue=6&rft.spage=923&rft.epage=927&rft.pages=923-927&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2019.2912295&rft_dat=%3Cproquest_RIE%3E2222215101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222215101&rft_id=info:pmid/&rft_ieee_id=8693955&rfr_iscdi=true