New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms
This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables w...
Gespeichert in:
Veröffentlicht in: | IEEE signal processing letters 2019-06, Vol.26 (6), p.923-927 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 927 |
---|---|
container_issue | 6 |
container_start_page | 923 |
container_title | IEEE signal processing letters |
container_volume | 26 |
creator | Ramirez-Espinosa, Pablo Morales-Jimenez, David Cortes, Jose A. Paris, Jose F. Martos-Naya, Eduardo |
description | This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables which converges in distribution to the target variable. By leveraging such convergence, simple approximations for both the CDF and PDF of the target variable are given in terms of the derivatives of its moment generating function (MGF). In contrast to classical approximation methods based on truncated series of moments or cumulants, our approximations always represent a valid distribution and the relative error between variables is independent of the variable under analysis. The derived results are then used to approximate the statistics of positive-definite real Gaussian quadratic forms, comparing our proposed approach with other existing approximations in the literature. |
doi_str_mv | 10.1109/LSP.2019.2912295 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8693955</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693955</ieee_id><sourcerecordid>2222215101</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-6667a7c1390292ff2fedbb49b0b0a672693d90bbcf0f727ac7893aad628bf7873</originalsourceid><addsrcrecordid>eNo9kMtLAzEQxoMoWKt3wcuC562TxM3jWKqtQtH6qNeQ7CaQ0jY12fXx35u14lxmBn7fPD6EzjGMMAZ5NX9ZjAhgOSISEyKrAzTAVSVKQhk-zDVwKKUEcYxOUloBgMCiGqDlg_0sxrtdDF9-o1sftkUbihuf2uhN99sHVyxC8q3_sMXzW-rptbdNz810l5LX2-Kp003M8rqYhrhJp-jI6XWyZ395iJbT29fJXTl_nN1PxvOyppS2JWOMa15jKoFI4hxxtjHmWhowoBknTNJGgjG1A8cJ1zUXkmrdMCKM44LTIbrcz833v3c2tWoVurjNKxXpA1cYcKZgT9UxpBStU7uYn43fCoPqzVPZPNWbp_7My5KLvcRba_9xkQ-SVUV_AN8-auk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2222215101</pqid></control><display><type>article</type><title>New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms</title><source>IEEE Electronic Library (IEL)</source><creator>Ramirez-Espinosa, Pablo ; Morales-Jimenez, David ; Cortes, Jose A. ; Paris, Jose F. ; Martos-Naya, Eduardo</creator><creatorcontrib>Ramirez-Espinosa, Pablo ; Morales-Jimenez, David ; Cortes, Jose A. ; Paris, Jose F. ; Martos-Naya, Eduardo</creatorcontrib><description>This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables which converges in distribution to the target variable. By leveraging such convergence, simple approximations for both the CDF and PDF of the target variable are given in terms of the derivatives of its moment generating function (MGF). In contrast to classical approximation methods based on truncated series of moments or cumulants, our approximations always represent a valid distribution and the relative error between variables is independent of the variable under analysis. The derived results are then used to approximate the statistics of positive-definite real Gaussian quadratic forms, comparing our proposed approach with other existing approximations in the literature.</description><identifier>ISSN: 1070-9908</identifier><identifier>EISSN: 1558-2361</identifier><identifier>DOI: 10.1109/LSP.2019.2912295</identifier><identifier>CODEN: ISPLEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Approximation ; Closed-form solutions ; Convergence ; Distribution functions ; Economic models ; Gaussian quadratic forms ; Independent variables ; Mathematical analysis ; Performance analysis ; Probability density function ; Probability density functions ; Quadratic forms ; Random variables ; signal detection ; Signal processing ; statistical distributions</subject><ispartof>IEEE signal processing letters, 2019-06, Vol.26 (6), p.923-927</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-6667a7c1390292ff2fedbb49b0b0a672693d90bbcf0f727ac7893aad628bf7873</citedby><cites>FETCH-LOGICAL-c333t-6667a7c1390292ff2fedbb49b0b0a672693d90bbcf0f727ac7893aad628bf7873</cites><orcidid>0000-0001-6514-5057 ; 0000-0002-2141-7185 ; 0000-0003-1161-0747 ; 0000-0001-5094-7735 ; 0000-0002-3914-8921</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693955$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27902,27903,54735</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8693955$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ramirez-Espinosa, Pablo</creatorcontrib><creatorcontrib>Morales-Jimenez, David</creatorcontrib><creatorcontrib>Cortes, Jose A.</creatorcontrib><creatorcontrib>Paris, Jose F.</creatorcontrib><creatorcontrib>Martos-Naya, Eduardo</creatorcontrib><title>New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms</title><title>IEEE signal processing letters</title><addtitle>LSP</addtitle><description>This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables which converges in distribution to the target variable. By leveraging such convergence, simple approximations for both the CDF and PDF of the target variable are given in terms of the derivatives of its moment generating function (MGF). In contrast to classical approximation methods based on truncated series of moments or cumulants, our approximations always represent a valid distribution and the relative error between variables is independent of the variable under analysis. The derived results are then used to approximate the statistics of positive-definite real Gaussian quadratic forms, comparing our proposed approach with other existing approximations in the literature.</description><subject>Approximation</subject><subject>Closed-form solutions</subject><subject>Convergence</subject><subject>Distribution functions</subject><subject>Economic models</subject><subject>Gaussian quadratic forms</subject><subject>Independent variables</subject><subject>Mathematical analysis</subject><subject>Performance analysis</subject><subject>Probability density function</subject><subject>Probability density functions</subject><subject>Quadratic forms</subject><subject>Random variables</subject><subject>signal detection</subject><subject>Signal processing</subject><subject>statistical distributions</subject><issn>1070-9908</issn><issn>1558-2361</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtLAzEQxoMoWKt3wcuC562TxM3jWKqtQtH6qNeQ7CaQ0jY12fXx35u14lxmBn7fPD6EzjGMMAZ5NX9ZjAhgOSISEyKrAzTAVSVKQhk-zDVwKKUEcYxOUloBgMCiGqDlg_0sxrtdDF9-o1sftkUbihuf2uhN99sHVyxC8q3_sMXzW-rptbdNz810l5LX2-Kp003M8rqYhrhJp-jI6XWyZ395iJbT29fJXTl_nN1PxvOyppS2JWOMa15jKoFI4hxxtjHmWhowoBknTNJGgjG1A8cJ1zUXkmrdMCKM44LTIbrcz833v3c2tWoVurjNKxXpA1cYcKZgT9UxpBStU7uYn43fCoPqzVPZPNWbp_7My5KLvcRba_9xkQ-SVUV_AN8-auk</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Ramirez-Espinosa, Pablo</creator><creator>Morales-Jimenez, David</creator><creator>Cortes, Jose A.</creator><creator>Paris, Jose F.</creator><creator>Martos-Naya, Eduardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-6514-5057</orcidid><orcidid>https://orcid.org/0000-0002-2141-7185</orcidid><orcidid>https://orcid.org/0000-0003-1161-0747</orcidid><orcidid>https://orcid.org/0000-0001-5094-7735</orcidid><orcidid>https://orcid.org/0000-0002-3914-8921</orcidid></search><sort><creationdate>20190601</creationdate><title>New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms</title><author>Ramirez-Espinosa, Pablo ; Morales-Jimenez, David ; Cortes, Jose A. ; Paris, Jose F. ; Martos-Naya, Eduardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-6667a7c1390292ff2fedbb49b0b0a672693d90bbcf0f727ac7893aad628bf7873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Approximation</topic><topic>Closed-form solutions</topic><topic>Convergence</topic><topic>Distribution functions</topic><topic>Economic models</topic><topic>Gaussian quadratic forms</topic><topic>Independent variables</topic><topic>Mathematical analysis</topic><topic>Performance analysis</topic><topic>Probability density function</topic><topic>Probability density functions</topic><topic>Quadratic forms</topic><topic>Random variables</topic><topic>signal detection</topic><topic>Signal processing</topic><topic>statistical distributions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramirez-Espinosa, Pablo</creatorcontrib><creatorcontrib>Morales-Jimenez, David</creatorcontrib><creatorcontrib>Cortes, Jose A.</creatorcontrib><creatorcontrib>Paris, Jose F.</creatorcontrib><creatorcontrib>Martos-Naya, Eduardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE signal processing letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ramirez-Espinosa, Pablo</au><au>Morales-Jimenez, David</au><au>Cortes, Jose A.</au><au>Paris, Jose F.</au><au>Martos-Naya, Eduardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms</atitle><jtitle>IEEE signal processing letters</jtitle><stitle>LSP</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>26</volume><issue>6</issue><spage>923</spage><epage>927</epage><pages>923-927</pages><issn>1070-9908</issn><eissn>1558-2361</eissn><coden>ISPLEM</coden><abstract>This letter introduces a new approach to the problem of approximating the probability density function (PDF) and the cumulative distribution function (CDF) of a positive random variable. The novel approximation strategy is based on the analysis of a suitably defined sequence of auxiliary variables which converges in distribution to the target variable. By leveraging such convergence, simple approximations for both the CDF and PDF of the target variable are given in terms of the derivatives of its moment generating function (MGF). In contrast to classical approximation methods based on truncated series of moments or cumulants, our approximations always represent a valid distribution and the relative error between variables is independent of the variable under analysis. The derived results are then used to approximate the statistics of positive-definite real Gaussian quadratic forms, comparing our proposed approach with other existing approximations in the literature.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LSP.2019.2912295</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0001-6514-5057</orcidid><orcidid>https://orcid.org/0000-0002-2141-7185</orcidid><orcidid>https://orcid.org/0000-0003-1161-0747</orcidid><orcidid>https://orcid.org/0000-0001-5094-7735</orcidid><orcidid>https://orcid.org/0000-0002-3914-8921</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1070-9908 |
ispartof | IEEE signal processing letters, 2019-06, Vol.26 (6), p.923-927 |
issn | 1070-9908 1558-2361 |
language | eng |
recordid | cdi_ieee_primary_8693955 |
source | IEEE Electronic Library (IEL) |
subjects | Approximation Closed-form solutions Convergence Distribution functions Economic models Gaussian quadratic forms Independent variables Mathematical analysis Performance analysis Probability density function Probability density functions Quadratic forms Random variables signal detection Signal processing statistical distributions |
title | New Approximation to Distribution of Positive RVs Applied to Gaussian Quadratic Forms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T09%3A42%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=New%20Approximation%20to%20Distribution%20of%20Positive%20RVs%20Applied%20to%20Gaussian%20Quadratic%20Forms&rft.jtitle=IEEE%20signal%20processing%20letters&rft.au=Ramirez-Espinosa,%20Pablo&rft.date=2019-06-01&rft.volume=26&rft.issue=6&rft.spage=923&rft.epage=927&rft.pages=923-927&rft.issn=1070-9908&rft.eissn=1558-2361&rft.coden=ISPLEM&rft_id=info:doi/10.1109/LSP.2019.2912295&rft_dat=%3Cproquest_RIE%3E2222215101%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2222215101&rft_id=info:pmid/&rft_ieee_id=8693955&rfr_iscdi=true |