Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures
Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on sustainable computing 2020-01, Vol.5 (1), p.81-94 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 94 |
---|---|
container_issue | 1 |
container_start_page | 81 |
container_title | IEEE transactions on sustainable computing |
container_volume | 5 |
creator | Kavanagh, Richard Djemame, Karim Ejarque, Jorge Badia, Rosa M. Garcia-Perez, David |
description | Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits. |
doi_str_mv | 10.1109/TSUSC.2019.2912000 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8693866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693866</ieee_id><sourcerecordid>2374729354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1defd59c18dd675c5cd0c07f08c47d7648e78cc1791889313138d8006aaee8283</originalsourceid><addsrcrecordid>eNo9kG9LwzAQxoMoOHRfQN8UfN2ZP22TvCxjOmGgsO2tISTX2VGbmrTovr3ZOsYd3B08zx33Q-iB4BkhWD5v1tv1fEYxkTMqCcUYX6EJZZynjEt8fekFvUXTEPZRQDjPJSUT9Llowe8OafmrPSRraKq0tLrrdV-7NqmcT8qua2ozzos_MMOpi7mEHrzbQQtuCMmH9rppoElKb77qHkw_eAj36KbSTYDpud6h7ctiM1-mq_fXt3m5Sg1jsk-Jhcrm0hBhbcFzkxuLDeYVFibjlheZAC6MIVwSISQjMYQVGBdaAwgq2B16Gvd23v0MEHq1d4Nv40kVn884lSzPooqOKuNdCB4q1fn6W_uDIlgdUaoTSnVEqc4oo-lxNNUAcDGIQjJRFOwfYrFwNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374729354</pqid></control><display><type>article</type><title>Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures</title><source>IEEE Electronic Library (IEL)</source><creator>Kavanagh, Richard ; Djemame, Karim ; Ejarque, Jorge ; Badia, Rosa M. ; Garcia-Perez, David</creator><creatorcontrib>Kavanagh, Richard ; Djemame, Karim ; Ejarque, Jorge ; Badia, Rosa M. ; Garcia-Perez, David</creatorcontrib><description>Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits.</description><identifier>ISSN: 2377-3782</identifier><identifier>EISSN: 2377-3790</identifier><identifier>DOI: 10.1109/TSUSC.2019.2912000</identifier><identifier>CODEN: ITSCBE</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; application deployment ; Computer architecture ; Energy consumption ; Energy management ; energy modelling ; Hardware ; Heterogeneity ; heterogeneous hardware architectures ; Middleware ; Monitoring ; Power consumption ; Power demand ; Power management ; programming model ; Quality of service ; Runtime ; Self-adaptation ; Task analysis</subject><ispartof>IEEE transactions on sustainable computing, 2020-01, Vol.5 (1), p.81-94</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1defd59c18dd675c5cd0c07f08c47d7648e78cc1791889313138d8006aaee8283</citedby><cites>FETCH-LOGICAL-c339t-1defd59c18dd675c5cd0c07f08c47d7648e78cc1791889313138d8006aaee8283</cites><orcidid>0000-0002-9357-2459 ; 0000-0001-5811-5263 ; 0000-0003-4725-5097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8693866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kavanagh, Richard</creatorcontrib><creatorcontrib>Djemame, Karim</creatorcontrib><creatorcontrib>Ejarque, Jorge</creatorcontrib><creatorcontrib>Badia, Rosa M.</creatorcontrib><creatorcontrib>Garcia-Perez, David</creatorcontrib><title>Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures</title><title>IEEE transactions on sustainable computing</title><addtitle>TSUSC</addtitle><description>Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits.</description><subject>Adaptation</subject><subject>application deployment</subject><subject>Computer architecture</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>energy modelling</subject><subject>Hardware</subject><subject>Heterogeneity</subject><subject>heterogeneous hardware architectures</subject><subject>Middleware</subject><subject>Monitoring</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power management</subject><subject>programming model</subject><subject>Quality of service</subject><subject>Runtime</subject><subject>Self-adaptation</subject><subject>Task analysis</subject><issn>2377-3782</issn><issn>2377-3790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kG9LwzAQxoMoOHRfQN8UfN2ZP22TvCxjOmGgsO2tISTX2VGbmrTovr3ZOsYd3B08zx33Q-iB4BkhWD5v1tv1fEYxkTMqCcUYX6EJZZynjEt8fekFvUXTEPZRQDjPJSUT9Llowe8OafmrPSRraKq0tLrrdV-7NqmcT8qua2ozzos_MMOpi7mEHrzbQQtuCMmH9rppoElKb77qHkw_eAj36KbSTYDpud6h7ctiM1-mq_fXt3m5Sg1jsk-Jhcrm0hBhbcFzkxuLDeYVFibjlheZAC6MIVwSISQjMYQVGBdaAwgq2B16Gvd23v0MEHq1d4Nv40kVn884lSzPooqOKuNdCB4q1fn6W_uDIlgdUaoTSnVEqc4oo-lxNNUAcDGIQjJRFOwfYrFwNw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kavanagh, Richard</creator><creator>Djemame, Karim</creator><creator>Ejarque, Jorge</creator><creator>Badia, Rosa M.</creator><creator>Garcia-Perez, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9357-2459</orcidid><orcidid>https://orcid.org/0000-0001-5811-5263</orcidid><orcidid>https://orcid.org/0000-0003-4725-5097</orcidid></search><sort><creationdate>202001</creationdate><title>Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures</title><author>Kavanagh, Richard ; Djemame, Karim ; Ejarque, Jorge ; Badia, Rosa M. ; Garcia-Perez, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1defd59c18dd675c5cd0c07f08c47d7648e78cc1791889313138d8006aaee8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>application deployment</topic><topic>Computer architecture</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>energy modelling</topic><topic>Hardware</topic><topic>Heterogeneity</topic><topic>heterogeneous hardware architectures</topic><topic>Middleware</topic><topic>Monitoring</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power management</topic><topic>programming model</topic><topic>Quality of service</topic><topic>Runtime</topic><topic>Self-adaptation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavanagh, Richard</creatorcontrib><creatorcontrib>Djemame, Karim</creatorcontrib><creatorcontrib>Ejarque, Jorge</creatorcontrib><creatorcontrib>Badia, Rosa M.</creatorcontrib><creatorcontrib>Garcia-Perez, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on sustainable computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kavanagh, Richard</au><au>Djemame, Karim</au><au>Ejarque, Jorge</au><au>Badia, Rosa M.</au><au>Garcia-Perez, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures</atitle><jtitle>IEEE transactions on sustainable computing</jtitle><stitle>TSUSC</stitle><date>2020-01</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><spage>81</spage><epage>94</epage><pages>81-94</pages><issn>2377-3782</issn><eissn>2377-3790</eissn><coden>ITSCBE</coden><abstract>Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSUSC.2019.2912000</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9357-2459</orcidid><orcidid>https://orcid.org/0000-0001-5811-5263</orcidid><orcidid>https://orcid.org/0000-0003-4725-5097</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2377-3782 |
ispartof | IEEE transactions on sustainable computing, 2020-01, Vol.5 (1), p.81-94 |
issn | 2377-3782 2377-3790 |
language | eng |
recordid | cdi_ieee_primary_8693866 |
source | IEEE Electronic Library (IEL) |
subjects | Adaptation application deployment Computer architecture Energy consumption Energy management energy modelling Hardware Heterogeneity heterogeneous hardware architectures Middleware Monitoring Power consumption Power demand Power management programming model Quality of service Runtime Self-adaptation Task analysis |
title | Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Self-Adaptation%20for%20Application%20Execution%20on%20Heterogeneous%20Parallel%20Architectures&rft.jtitle=IEEE%20transactions%20on%20sustainable%20computing&rft.au=Kavanagh,%20Richard&rft.date=2020-01&rft.volume=5&rft.issue=1&rft.spage=81&rft.epage=94&rft.pages=81-94&rft.issn=2377-3782&rft.eissn=2377-3790&rft.coden=ITSCBE&rft_id=info:doi/10.1109/TSUSC.2019.2912000&rft_dat=%3Cproquest_RIE%3E2374729354%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374729354&rft_id=info:pmid/&rft_ieee_id=8693866&rfr_iscdi=true |