Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures

Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on sustainable computing 2020-01, Vol.5 (1), p.81-94
Hauptverfasser: Kavanagh, Richard, Djemame, Karim, Ejarque, Jorge, Badia, Rosa M., Garcia-Perez, David
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 94
container_issue 1
container_start_page 81
container_title IEEE transactions on sustainable computing
container_volume 5
creator Kavanagh, Richard
Djemame, Karim
Ejarque, Jorge
Badia, Rosa M.
Garcia-Perez, David
description Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits.
doi_str_mv 10.1109/TSUSC.2019.2912000
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8693866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693866</ieee_id><sourcerecordid>2374729354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-1defd59c18dd675c5cd0c07f08c47d7648e78cc1791889313138d8006aaee8283</originalsourceid><addsrcrecordid>eNo9kG9LwzAQxoMoOHRfQN8UfN2ZP22TvCxjOmGgsO2tISTX2VGbmrTovr3ZOsYd3B08zx33Q-iB4BkhWD5v1tv1fEYxkTMqCcUYX6EJZZynjEt8fekFvUXTEPZRQDjPJSUT9Llowe8OafmrPSRraKq0tLrrdV-7NqmcT8qua2ozzos_MMOpi7mEHrzbQQtuCMmH9rppoElKb77qHkw_eAj36KbSTYDpud6h7ctiM1-mq_fXt3m5Sg1jsk-Jhcrm0hBhbcFzkxuLDeYVFibjlheZAC6MIVwSISQjMYQVGBdaAwgq2B16Gvd23v0MEHq1d4Nv40kVn884lSzPooqOKuNdCB4q1fn6W_uDIlgdUaoTSnVEqc4oo-lxNNUAcDGIQjJRFOwfYrFwNw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374729354</pqid></control><display><type>article</type><title>Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures</title><source>IEEE Electronic Library (IEL)</source><creator>Kavanagh, Richard ; Djemame, Karim ; Ejarque, Jorge ; Badia, Rosa M. ; Garcia-Perez, David</creator><creatorcontrib>Kavanagh, Richard ; Djemame, Karim ; Ejarque, Jorge ; Badia, Rosa M. ; Garcia-Perez, David</creatorcontrib><description>Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits.</description><identifier>ISSN: 2377-3782</identifier><identifier>EISSN: 2377-3790</identifier><identifier>DOI: 10.1109/TSUSC.2019.2912000</identifier><identifier>CODEN: ITSCBE</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation ; application deployment ; Computer architecture ; Energy consumption ; Energy management ; energy modelling ; Hardware ; Heterogeneity ; heterogeneous hardware architectures ; Middleware ; Monitoring ; Power consumption ; Power demand ; Power management ; programming model ; Quality of service ; Runtime ; Self-adaptation ; Task analysis</subject><ispartof>IEEE transactions on sustainable computing, 2020-01, Vol.5 (1), p.81-94</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-1defd59c18dd675c5cd0c07f08c47d7648e78cc1791889313138d8006aaee8283</citedby><cites>FETCH-LOGICAL-c339t-1defd59c18dd675c5cd0c07f08c47d7648e78cc1791889313138d8006aaee8283</cites><orcidid>0000-0002-9357-2459 ; 0000-0001-5811-5263 ; 0000-0003-4725-5097</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693866$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8693866$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kavanagh, Richard</creatorcontrib><creatorcontrib>Djemame, Karim</creatorcontrib><creatorcontrib>Ejarque, Jorge</creatorcontrib><creatorcontrib>Badia, Rosa M.</creatorcontrib><creatorcontrib>Garcia-Perez, David</creatorcontrib><title>Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures</title><title>IEEE transactions on sustainable computing</title><addtitle>TSUSC</addtitle><description>Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits.</description><subject>Adaptation</subject><subject>application deployment</subject><subject>Computer architecture</subject><subject>Energy consumption</subject><subject>Energy management</subject><subject>energy modelling</subject><subject>Hardware</subject><subject>Heterogeneity</subject><subject>heterogeneous hardware architectures</subject><subject>Middleware</subject><subject>Monitoring</subject><subject>Power consumption</subject><subject>Power demand</subject><subject>Power management</subject><subject>programming model</subject><subject>Quality of service</subject><subject>Runtime</subject><subject>Self-adaptation</subject><subject>Task analysis</subject><issn>2377-3782</issn><issn>2377-3790</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kG9LwzAQxoMoOHRfQN8UfN2ZP22TvCxjOmGgsO2tISTX2VGbmrTovr3ZOsYd3B08zx33Q-iB4BkhWD5v1tv1fEYxkTMqCcUYX6EJZZynjEt8fekFvUXTEPZRQDjPJSUT9Llowe8OafmrPSRraKq0tLrrdV-7NqmcT8qua2ozzos_MMOpi7mEHrzbQQtuCMmH9rppoElKb77qHkw_eAj36KbSTYDpud6h7ctiM1-mq_fXt3m5Sg1jsk-Jhcrm0hBhbcFzkxuLDeYVFibjlheZAC6MIVwSISQjMYQVGBdaAwgq2B16Gvd23v0MEHq1d4Nv40kVn884lSzPooqOKuNdCB4q1fn6W_uDIlgdUaoTSnVEqc4oo-lxNNUAcDGIQjJRFOwfYrFwNw</recordid><startdate>202001</startdate><enddate>202001</enddate><creator>Kavanagh, Richard</creator><creator>Djemame, Karim</creator><creator>Ejarque, Jorge</creator><creator>Badia, Rosa M.</creator><creator>Garcia-Perez, David</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9357-2459</orcidid><orcidid>https://orcid.org/0000-0001-5811-5263</orcidid><orcidid>https://orcid.org/0000-0003-4725-5097</orcidid></search><sort><creationdate>202001</creationdate><title>Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures</title><author>Kavanagh, Richard ; Djemame, Karim ; Ejarque, Jorge ; Badia, Rosa M. ; Garcia-Perez, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-1defd59c18dd675c5cd0c07f08c47d7648e78cc1791889313138d8006aaee8283</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Adaptation</topic><topic>application deployment</topic><topic>Computer architecture</topic><topic>Energy consumption</topic><topic>Energy management</topic><topic>energy modelling</topic><topic>Hardware</topic><topic>Heterogeneity</topic><topic>heterogeneous hardware architectures</topic><topic>Middleware</topic><topic>Monitoring</topic><topic>Power consumption</topic><topic>Power demand</topic><topic>Power management</topic><topic>programming model</topic><topic>Quality of service</topic><topic>Runtime</topic><topic>Self-adaptation</topic><topic>Task analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kavanagh, Richard</creatorcontrib><creatorcontrib>Djemame, Karim</creatorcontrib><creatorcontrib>Ejarque, Jorge</creatorcontrib><creatorcontrib>Badia, Rosa M.</creatorcontrib><creatorcontrib>Garcia-Perez, David</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on sustainable computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kavanagh, Richard</au><au>Djemame, Karim</au><au>Ejarque, Jorge</au><au>Badia, Rosa M.</au><au>Garcia-Perez, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures</atitle><jtitle>IEEE transactions on sustainable computing</jtitle><stitle>TSUSC</stitle><date>2020-01</date><risdate>2020</risdate><volume>5</volume><issue>1</issue><spage>81</spage><epage>94</epage><pages>81-94</pages><issn>2377-3782</issn><eissn>2377-3790</eissn><coden>ITSCBE</coden><abstract>Hardware in High Performance Computing environments in recent years have increasingly become more heterogeneous in order to improve computational performance. An additional aspect of such systems is the management of power and energy consumption. The increase in heterogeneity requires middleware and programming model abstractions to eliminate additional complexities that it brings, while also offering opportunities such as improved power management. In this paper, we explore application level self-adaptation including aspects such as automated configuration and deployment of applications to different heterogeneous infrastructure and for their redeployment. This therefore not only mitigates complexities associated with heterogeneous devices but aims to take advantage of the heterogeneity. The overall result of this paper is a self-adaptive framework that manages application Quality of Service (QoS) at runtime, which includes the automatic migration of applications between different accelerated infrastructures. Discussion covers when this migration is appropriate and quantifies the likely benefits.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSUSC.2019.2912000</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9357-2459</orcidid><orcidid>https://orcid.org/0000-0001-5811-5263</orcidid><orcidid>https://orcid.org/0000-0003-4725-5097</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3782
ispartof IEEE transactions on sustainable computing, 2020-01, Vol.5 (1), p.81-94
issn 2377-3782
2377-3790
language eng
recordid cdi_ieee_primary_8693866
source IEEE Electronic Library (IEL)
subjects Adaptation
application deployment
Computer architecture
Energy consumption
Energy management
energy modelling
Hardware
Heterogeneity
heterogeneous hardware architectures
Middleware
Monitoring
Power consumption
Power demand
Power management
programming model
Quality of service
Runtime
Self-adaptation
Task analysis
title Energy-Aware Self-Adaptation for Application Execution on Heterogeneous Parallel Architectures
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T20%3A20%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Energy-Aware%20Self-Adaptation%20for%20Application%20Execution%20on%20Heterogeneous%20Parallel%20Architectures&rft.jtitle=IEEE%20transactions%20on%20sustainable%20computing&rft.au=Kavanagh,%20Richard&rft.date=2020-01&rft.volume=5&rft.issue=1&rft.spage=81&rft.epage=94&rft.pages=81-94&rft.issn=2377-3782&rft.eissn=2377-3790&rft.coden=ITSCBE&rft_id=info:doi/10.1109/TSUSC.2019.2912000&rft_dat=%3Cproquest_RIE%3E2374729354%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374729354&rft_id=info:pmid/&rft_ieee_id=8693866&rfr_iscdi=true