Distributed Sliding Mode Control for Nonlinear Heterogeneous Platoon Systems With Positive Definite Topologies
This paper is concerned with the distributed control of vehicle platoons. The dynamics of each vehicle are nonlinear and heterogeneous. The control objective is to regulate vehicles to travel at a common speed while maintaining desired intervehicle gaps. The information flow topology dictates the pa...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on control systems technology 2020-07, Vol.28 (4), p.1272-1283 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1283 |
---|---|
container_issue | 4 |
container_start_page | 1272 |
container_title | IEEE transactions on control systems technology |
container_volume | 28 |
creator | Wu, Yujia Li, Shengbo Eben Cortes, Jorge Poolla, Kameshwar |
description | This paper is concerned with the distributed control of vehicle platoons. The dynamics of each vehicle are nonlinear and heterogeneous. The control objective is to regulate vehicles to travel at a common speed while maintaining desired intervehicle gaps. The information flow topology dictates the pattern of communication between vehicles in the platoon. This information is essential to effective platoon control and, therefore, plays a central role in affecting the design and performance of platoon control strategies. Our key contribution is a unified distributed control framework that explicitly incorporates and supports a diversity of information flow topologies. Specifically, we propose a distributed sliding mode control (DSMC) framework for a class of generic topologies. The DSMC constructs the topological sliding surface and reaching law via a so-called "topologically structured function." The control law obtained by matching the topological sliding surface and topological reaching law is naturally distributed. The Lyapunov stability analysis is carried out for the closed-loop system in the sense of Filippov to cope with the discontinuity originated from switching terms. Moreover, a tradeoff between tracking precision and chattering elimination is discussed with a continuous approximation of the switching control law. The effectiveness of the DSMC for platoons is verified under four different topologies through numerical simulation. |
doi_str_mv | 10.1109/TCST.2019.2908146 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8693858</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8693858</ieee_id><sourcerecordid>2413218078</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ac0638119b61c9727f36156927449c8e10bf09770b617583ab3fb85ab993421a3</originalsourceid><addsrcrecordid>eNo9kE9Lw0AQxYMoWKsfQLwseE7dySb75yipWqFqoRGPIUkndUu6W3c3Qr-9KS2e5sG8N_P4RdEt0AkAVQ9FviwmCQU1SRSVkPKzaARZJmMqeXY-aMpZzDPGL6Mr7zeUQpolYhSZqfbB6boPuCLLTq-0WZM3u0KSWxOc7UhrHXm3ptMGK0dmGNDZNRq0vSeLrgrWGrLc-4BbT750-CYL63XQv0im2GqjA5LC7mxn1xr9dXTRVp3Hm9McR5_PT0U-i-cfL6_54zxuGOMhrpqhrgRQNYdGiUS0jEPGVSLSVDUSgdYtVULQYS8yyaqatbXMqlopliZQsXF0f7y7c_anRx_Kje2dGV6WSQosAUmFHFxwdDXOeu-wLXdObyu3L4GWB6zlAWt5wFqesA6Zu2NGI-K_X3LF5FDkD4RhdCM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2413218078</pqid></control><display><type>article</type><title>Distributed Sliding Mode Control for Nonlinear Heterogeneous Platoon Systems With Positive Definite Topologies</title><source>IEEE Electronic Library (IEL)</source><creator>Wu, Yujia ; Li, Shengbo Eben ; Cortes, Jorge ; Poolla, Kameshwar</creator><creatorcontrib>Wu, Yujia ; Li, Shengbo Eben ; Cortes, Jorge ; Poolla, Kameshwar</creatorcontrib><description>This paper is concerned with the distributed control of vehicle platoons. The dynamics of each vehicle are nonlinear and heterogeneous. The control objective is to regulate vehicles to travel at a common speed while maintaining desired intervehicle gaps. The information flow topology dictates the pattern of communication between vehicles in the platoon. This information is essential to effective platoon control and, therefore, plays a central role in affecting the design and performance of platoon control strategies. Our key contribution is a unified distributed control framework that explicitly incorporates and supports a diversity of information flow topologies. Specifically, we propose a distributed sliding mode control (DSMC) framework for a class of generic topologies. The DSMC constructs the topological sliding surface and reaching law via a so-called "topologically structured function." The control law obtained by matching the topological sliding surface and topological reaching law is naturally distributed. The Lyapunov stability analysis is carried out for the closed-loop system in the sense of Filippov to cope with the discontinuity originated from switching terms. Moreover, a tradeoff between tracking precision and chattering elimination is discussed with a continuous approximation of the switching control law. The effectiveness of the DSMC for platoons is verified under four different topologies through numerical simulation.</description><identifier>ISSN: 1063-6536</identifier><identifier>EISSN: 1558-0865</identifier><identifier>DOI: 10.1109/TCST.2019.2908146</identifier><identifier>CODEN: IETTE2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automated vehicle ; Computer simulation ; consensus problem ; Control theory ; Decentralized control ; Feedback control ; Information flow ; Network topology ; networks of autonomous agents ; Nonlinear control ; Nonlinear systems ; Sliding mode control ; Stability analysis ; Surface matching ; Switches ; Switching ; Topology ; Vehicle dynamics ; vehicle platoon ; Vehicles</subject><ispartof>IEEE transactions on control systems technology, 2020-07, Vol.28 (4), p.1272-1283</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ac0638119b61c9727f36156927449c8e10bf09770b617583ab3fb85ab993421a3</citedby><cites>FETCH-LOGICAL-c336t-ac0638119b61c9727f36156927449c8e10bf09770b617583ab3fb85ab993421a3</cites><orcidid>0000-0003-4923-3633 ; 0000-0002-0864-9790 ; 0000-0001-9582-5184</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8693858$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8693858$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wu, Yujia</creatorcontrib><creatorcontrib>Li, Shengbo Eben</creatorcontrib><creatorcontrib>Cortes, Jorge</creatorcontrib><creatorcontrib>Poolla, Kameshwar</creatorcontrib><title>Distributed Sliding Mode Control for Nonlinear Heterogeneous Platoon Systems With Positive Definite Topologies</title><title>IEEE transactions on control systems technology</title><addtitle>TCST</addtitle><description>This paper is concerned with the distributed control of vehicle platoons. The dynamics of each vehicle are nonlinear and heterogeneous. The control objective is to regulate vehicles to travel at a common speed while maintaining desired intervehicle gaps. The information flow topology dictates the pattern of communication between vehicles in the platoon. This information is essential to effective platoon control and, therefore, plays a central role in affecting the design and performance of platoon control strategies. Our key contribution is a unified distributed control framework that explicitly incorporates and supports a diversity of information flow topologies. Specifically, we propose a distributed sliding mode control (DSMC) framework for a class of generic topologies. The DSMC constructs the topological sliding surface and reaching law via a so-called "topologically structured function." The control law obtained by matching the topological sliding surface and topological reaching law is naturally distributed. The Lyapunov stability analysis is carried out for the closed-loop system in the sense of Filippov to cope with the discontinuity originated from switching terms. Moreover, a tradeoff between tracking precision and chattering elimination is discussed with a continuous approximation of the switching control law. The effectiveness of the DSMC for platoons is verified under four different topologies through numerical simulation.</description><subject>Automated vehicle</subject><subject>Computer simulation</subject><subject>consensus problem</subject><subject>Control theory</subject><subject>Decentralized control</subject><subject>Feedback control</subject><subject>Information flow</subject><subject>Network topology</subject><subject>networks of autonomous agents</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Sliding mode control</subject><subject>Stability analysis</subject><subject>Surface matching</subject><subject>Switches</subject><subject>Switching</subject><subject>Topology</subject><subject>Vehicle dynamics</subject><subject>vehicle platoon</subject><subject>Vehicles</subject><issn>1063-6536</issn><issn>1558-0865</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9Lw0AQxYMoWKsfQLwseE7dySb75yipWqFqoRGPIUkndUu6W3c3Qr-9KS2e5sG8N_P4RdEt0AkAVQ9FviwmCQU1SRSVkPKzaARZJmMqeXY-aMpZzDPGL6Mr7zeUQpolYhSZqfbB6boPuCLLTq-0WZM3u0KSWxOc7UhrHXm3ptMGK0dmGNDZNRq0vSeLrgrWGrLc-4BbT750-CYL63XQv0im2GqjA5LC7mxn1xr9dXTRVp3Hm9McR5_PT0U-i-cfL6_54zxuGOMhrpqhrgRQNYdGiUS0jEPGVSLSVDUSgdYtVULQYS8yyaqatbXMqlopliZQsXF0f7y7c_anRx_Kje2dGV6WSQosAUmFHFxwdDXOeu-wLXdObyu3L4GWB6zlAWt5wFqesA6Zu2NGI-K_X3LF5FDkD4RhdCM</recordid><startdate>202007</startdate><enddate>202007</enddate><creator>Wu, Yujia</creator><creator>Li, Shengbo Eben</creator><creator>Cortes, Jorge</creator><creator>Poolla, Kameshwar</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4923-3633</orcidid><orcidid>https://orcid.org/0000-0002-0864-9790</orcidid><orcidid>https://orcid.org/0000-0001-9582-5184</orcidid></search><sort><creationdate>202007</creationdate><title>Distributed Sliding Mode Control for Nonlinear Heterogeneous Platoon Systems With Positive Definite Topologies</title><author>Wu, Yujia ; Li, Shengbo Eben ; Cortes, Jorge ; Poolla, Kameshwar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ac0638119b61c9727f36156927449c8e10bf09770b617583ab3fb85ab993421a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Automated vehicle</topic><topic>Computer simulation</topic><topic>consensus problem</topic><topic>Control theory</topic><topic>Decentralized control</topic><topic>Feedback control</topic><topic>Information flow</topic><topic>Network topology</topic><topic>networks of autonomous agents</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Sliding mode control</topic><topic>Stability analysis</topic><topic>Surface matching</topic><topic>Switches</topic><topic>Switching</topic><topic>Topology</topic><topic>Vehicle dynamics</topic><topic>vehicle platoon</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Yujia</creatorcontrib><creatorcontrib>Li, Shengbo Eben</creatorcontrib><creatorcontrib>Cortes, Jorge</creatorcontrib><creatorcontrib>Poolla, Kameshwar</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on control systems technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wu, Yujia</au><au>Li, Shengbo Eben</au><au>Cortes, Jorge</au><au>Poolla, Kameshwar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Sliding Mode Control for Nonlinear Heterogeneous Platoon Systems With Positive Definite Topologies</atitle><jtitle>IEEE transactions on control systems technology</jtitle><stitle>TCST</stitle><date>2020-07</date><risdate>2020</risdate><volume>28</volume><issue>4</issue><spage>1272</spage><epage>1283</epage><pages>1272-1283</pages><issn>1063-6536</issn><eissn>1558-0865</eissn><coden>IETTE2</coden><abstract>This paper is concerned with the distributed control of vehicle platoons. The dynamics of each vehicle are nonlinear and heterogeneous. The control objective is to regulate vehicles to travel at a common speed while maintaining desired intervehicle gaps. The information flow topology dictates the pattern of communication between vehicles in the platoon. This information is essential to effective platoon control and, therefore, plays a central role in affecting the design and performance of platoon control strategies. Our key contribution is a unified distributed control framework that explicitly incorporates and supports a diversity of information flow topologies. Specifically, we propose a distributed sliding mode control (DSMC) framework for a class of generic topologies. The DSMC constructs the topological sliding surface and reaching law via a so-called "topologically structured function." The control law obtained by matching the topological sliding surface and topological reaching law is naturally distributed. The Lyapunov stability analysis is carried out for the closed-loop system in the sense of Filippov to cope with the discontinuity originated from switching terms. Moreover, a tradeoff between tracking precision and chattering elimination is discussed with a continuous approximation of the switching control law. The effectiveness of the DSMC for platoons is verified under four different topologies through numerical simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCST.2019.2908146</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-4923-3633</orcidid><orcidid>https://orcid.org/0000-0002-0864-9790</orcidid><orcidid>https://orcid.org/0000-0001-9582-5184</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6536 |
ispartof | IEEE transactions on control systems technology, 2020-07, Vol.28 (4), p.1272-1283 |
issn | 1063-6536 1558-0865 |
language | eng |
recordid | cdi_ieee_primary_8693858 |
source | IEEE Electronic Library (IEL) |
subjects | Automated vehicle Computer simulation consensus problem Control theory Decentralized control Feedback control Information flow Network topology networks of autonomous agents Nonlinear control Nonlinear systems Sliding mode control Stability analysis Surface matching Switches Switching Topology Vehicle dynamics vehicle platoon Vehicles |
title | Distributed Sliding Mode Control for Nonlinear Heterogeneous Platoon Systems With Positive Definite Topologies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T10%3A08%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Sliding%20Mode%20Control%20for%20Nonlinear%20Heterogeneous%20Platoon%20Systems%20With%20Positive%20Definite%20Topologies&rft.jtitle=IEEE%20transactions%20on%20control%20systems%20technology&rft.au=Wu,%20Yujia&rft.date=2020-07&rft.volume=28&rft.issue=4&rft.spage=1272&rft.epage=1283&rft.pages=1272-1283&rft.issn=1063-6536&rft.eissn=1558-0865&rft.coden=IETTE2&rft_id=info:doi/10.1109/TCST.2019.2908146&rft_dat=%3Cproquest_RIE%3E2413218078%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2413218078&rft_id=info:pmid/&rft_ieee_id=8693858&rfr_iscdi=true |