An Efficient Online Placement Scheme for Cloud Container Clusters
Containers represent an agile alternative to virtual machines (VMs), for providing cloud computing services. Containers are more flexible and lightweight, and can be easily instrumented. Enterprise users often create clusters of inter-connected containers to provision complex services. Compared to t...
Gespeichert in:
Veröffentlicht in: | IEEE journal on selected areas in communications 2019-05, Vol.37 (5), p.1046-1058 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1058 |
---|---|
container_issue | 5 |
container_start_page | 1046 |
container_title | IEEE journal on selected areas in communications |
container_volume | 37 |
creator | Zhou, Ruiting Li, Zongpeng Wu, Chuan |
description | Containers represent an agile alternative to virtual machines (VMs), for providing cloud computing services. Containers are more flexible and lightweight, and can be easily instrumented. Enterprise users often create clusters of inter-connected containers to provision complex services. Compared to traditional cloud services, key challenges in container cluster (CC) provisioning lie in the optimal placement of containers while considering inter-container traffic in a CC. The challenge further escalates, when CCs are provisioned in an online fashion. We propose an online algorithm to address the above challenges, aiming to maximize the aggregate value of all served clusters. We first study a one-shot CC placement problem. Leveraging techniques of exhaustive sampling and ST rounding, we design an efficient one-shot algorithm to determine the placement scheme of a given CC. We then propose a primal-dual online placement scheme that employs the one-shot algorithm as a building block to make decisions upon the arrival of each CC request. Through both theoretical analysis and trace-driven simulations, we verify that the online placement algorithm is computationally efficient and achieves a good competitive ratio. |
doi_str_mv | 10.1109/JSAC.2019.2906745 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8691672</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8691672</ieee_id><sourcerecordid>2211110123</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-e9f25d7d9fa66b9647899ef71f5de8b7ff4c3bee6bb80cb79d06c3d16827bf2c3</originalsourceid><addsrcrecordid>eNo9kEtLw0AQgBdRsFZ_gHgJeE7d2U32cQyhvihUqJ6X7GYWU9Kk7iYH_70JLc5lHnwzAx8h90BXAFQ_ve-KcsUo6BXTVMgsvyALyHOVUkrVJVlQyXmqJIhrchPjnlLIMsUWpCi6ZO194xrshmTbtU2HyUdbOTzMg537norE9yEp236sk7Lvhmpi5n6MA4Z4S6581Ua8O-cl-Xpef5av6Wb78lYWm9QxzYcUtWd5LWvtKyGsFplUWqOX4PMalZXeZ45bRGGtos5KXVPheA1CMWk9c3xJHk93j6H_GTEOZt-PoZteGsZgCgqMTxScKBf6GAN6cwzNoQq_BqiZTZnZlJlNmbOpaefhtNMg4j-vhAYhGf8D4gpkPw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2211110123</pqid></control><display><type>article</type><title>An Efficient Online Placement Scheme for Cloud Container Clusters</title><source>IEEE Electronic Library (IEL)</source><creator>Zhou, Ruiting ; Li, Zongpeng ; Wu, Chuan</creator><creatorcontrib>Zhou, Ruiting ; Li, Zongpeng ; Wu, Chuan</creatorcontrib><description>Containers represent an agile alternative to virtual machines (VMs), for providing cloud computing services. Containers are more flexible and lightweight, and can be easily instrumented. Enterprise users often create clusters of inter-connected containers to provision complex services. Compared to traditional cloud services, key challenges in container cluster (CC) provisioning lie in the optimal placement of containers while considering inter-container traffic in a CC. The challenge further escalates, when CCs are provisioned in an online fashion. We propose an online algorithm to address the above challenges, aiming to maximize the aggregate value of all served clusters. We first study a one-shot CC placement problem. Leveraging techniques of exhaustive sampling and ST rounding, we design an efficient one-shot algorithm to determine the placement scheme of a given CC. We then propose a primal-dual online placement scheme that employs the one-shot algorithm as a building block to make decisions upon the arrival of each CC request. Through both theoretical analysis and trace-driven simulations, we verify that the online placement algorithm is computationally efficient and achieves a good competitive ratio.</description><identifier>ISSN: 0733-8716</identifier><identifier>EISSN: 1558-0008</identifier><identifier>DOI: 10.1109/JSAC.2019.2906745</identifier><identifier>CODEN: ISACEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation algorithms ; Cloud computing ; Cloud container clusters ; Clustering algorithms ; Clusters ; compact exponential optimization ; Computational modeling ; Computer simulation ; Containers ; Decision theory ; Heuristic algorithms ; online algorithms ; Optimization ; Placement ; Provisioning ; Rounding ; Virtual environments</subject><ispartof>IEEE journal on selected areas in communications, 2019-05, Vol.37 (5), p.1046-1058</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-e9f25d7d9fa66b9647899ef71f5de8b7ff4c3bee6bb80cb79d06c3d16827bf2c3</citedby><cites>FETCH-LOGICAL-c293t-e9f25d7d9fa66b9647899ef71f5de8b7ff4c3bee6bb80cb79d06c3d16827bf2c3</cites><orcidid>0000-0002-3144-4398 ; 0000-0001-9681-6482</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8691672$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,777,781,793,27905,27906,54739</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8691672$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhou, Ruiting</creatorcontrib><creatorcontrib>Li, Zongpeng</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><title>An Efficient Online Placement Scheme for Cloud Container Clusters</title><title>IEEE journal on selected areas in communications</title><addtitle>J-SAC</addtitle><description>Containers represent an agile alternative to virtual machines (VMs), for providing cloud computing services. Containers are more flexible and lightweight, and can be easily instrumented. Enterprise users often create clusters of inter-connected containers to provision complex services. Compared to traditional cloud services, key challenges in container cluster (CC) provisioning lie in the optimal placement of containers while considering inter-container traffic in a CC. The challenge further escalates, when CCs are provisioned in an online fashion. We propose an online algorithm to address the above challenges, aiming to maximize the aggregate value of all served clusters. We first study a one-shot CC placement problem. Leveraging techniques of exhaustive sampling and ST rounding, we design an efficient one-shot algorithm to determine the placement scheme of a given CC. We then propose a primal-dual online placement scheme that employs the one-shot algorithm as a building block to make decisions upon the arrival of each CC request. Through both theoretical analysis and trace-driven simulations, we verify that the online placement algorithm is computationally efficient and achieves a good competitive ratio.</description><subject>Algorithms</subject><subject>Approximation algorithms</subject><subject>Cloud computing</subject><subject>Cloud container clusters</subject><subject>Clustering algorithms</subject><subject>Clusters</subject><subject>compact exponential optimization</subject><subject>Computational modeling</subject><subject>Computer simulation</subject><subject>Containers</subject><subject>Decision theory</subject><subject>Heuristic algorithms</subject><subject>online algorithms</subject><subject>Optimization</subject><subject>Placement</subject><subject>Provisioning</subject><subject>Rounding</subject><subject>Virtual environments</subject><issn>0733-8716</issn><issn>1558-0008</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEtLw0AQgBdRsFZ_gHgJeE7d2U32cQyhvihUqJ6X7GYWU9Kk7iYH_70JLc5lHnwzAx8h90BXAFQ_ve-KcsUo6BXTVMgsvyALyHOVUkrVJVlQyXmqJIhrchPjnlLIMsUWpCi6ZO194xrshmTbtU2HyUdbOTzMg537norE9yEp236sk7Lvhmpi5n6MA4Z4S6581Ua8O-cl-Xpef5av6Wb78lYWm9QxzYcUtWd5LWvtKyGsFplUWqOX4PMalZXeZ45bRGGtos5KXVPheA1CMWk9c3xJHk93j6H_GTEOZt-PoZteGsZgCgqMTxScKBf6GAN6cwzNoQq_BqiZTZnZlJlNmbOpaefhtNMg4j-vhAYhGf8D4gpkPw</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Zhou, Ruiting</creator><creator>Li, Zongpeng</creator><creator>Wu, Chuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3144-4398</orcidid><orcidid>https://orcid.org/0000-0001-9681-6482</orcidid></search><sort><creationdate>20190501</creationdate><title>An Efficient Online Placement Scheme for Cloud Container Clusters</title><author>Zhou, Ruiting ; Li, Zongpeng ; Wu, Chuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-e9f25d7d9fa66b9647899ef71f5de8b7ff4c3bee6bb80cb79d06c3d16827bf2c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Approximation algorithms</topic><topic>Cloud computing</topic><topic>Cloud container clusters</topic><topic>Clustering algorithms</topic><topic>Clusters</topic><topic>compact exponential optimization</topic><topic>Computational modeling</topic><topic>Computer simulation</topic><topic>Containers</topic><topic>Decision theory</topic><topic>Heuristic algorithms</topic><topic>online algorithms</topic><topic>Optimization</topic><topic>Placement</topic><topic>Provisioning</topic><topic>Rounding</topic><topic>Virtual environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Ruiting</creatorcontrib><creatorcontrib>Li, Zongpeng</creatorcontrib><creatorcontrib>Wu, Chuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal on selected areas in communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhou, Ruiting</au><au>Li, Zongpeng</au><au>Wu, Chuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Efficient Online Placement Scheme for Cloud Container Clusters</atitle><jtitle>IEEE journal on selected areas in communications</jtitle><stitle>J-SAC</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>37</volume><issue>5</issue><spage>1046</spage><epage>1058</epage><pages>1046-1058</pages><issn>0733-8716</issn><eissn>1558-0008</eissn><coden>ISACEM</coden><abstract>Containers represent an agile alternative to virtual machines (VMs), for providing cloud computing services. Containers are more flexible and lightweight, and can be easily instrumented. Enterprise users often create clusters of inter-connected containers to provision complex services. Compared to traditional cloud services, key challenges in container cluster (CC) provisioning lie in the optimal placement of containers while considering inter-container traffic in a CC. The challenge further escalates, when CCs are provisioned in an online fashion. We propose an online algorithm to address the above challenges, aiming to maximize the aggregate value of all served clusters. We first study a one-shot CC placement problem. Leveraging techniques of exhaustive sampling and ST rounding, we design an efficient one-shot algorithm to determine the placement scheme of a given CC. We then propose a primal-dual online placement scheme that employs the one-shot algorithm as a building block to make decisions upon the arrival of each CC request. Through both theoretical analysis and trace-driven simulations, we verify that the online placement algorithm is computationally efficient and achieves a good competitive ratio.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSAC.2019.2906745</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-3144-4398</orcidid><orcidid>https://orcid.org/0000-0001-9681-6482</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0733-8716 |
ispartof | IEEE journal on selected areas in communications, 2019-05, Vol.37 (5), p.1046-1058 |
issn | 0733-8716 1558-0008 |
language | eng |
recordid | cdi_ieee_primary_8691672 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Approximation algorithms Cloud computing Cloud container clusters Clustering algorithms Clusters compact exponential optimization Computational modeling Computer simulation Containers Decision theory Heuristic algorithms online algorithms Optimization Placement Provisioning Rounding Virtual environments |
title | An Efficient Online Placement Scheme for Cloud Container Clusters |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T02%3A39%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Efficient%20Online%20Placement%20Scheme%20for%20Cloud%20Container%20Clusters&rft.jtitle=IEEE%20journal%20on%20selected%20areas%20in%20communications&rft.au=Zhou,%20Ruiting&rft.date=2019-05-01&rft.volume=37&rft.issue=5&rft.spage=1046&rft.epage=1058&rft.pages=1046-1058&rft.issn=0733-8716&rft.eissn=1558-0008&rft.coden=ISACEM&rft_id=info:doi/10.1109/JSAC.2019.2906745&rft_dat=%3Cproquest_RIE%3E2211110123%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2211110123&rft_id=info:pmid/&rft_ieee_id=8691672&rfr_iscdi=true |