Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications

Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scalin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on services computing 2021-11, Vol.14 (6), p.1739-1750
Hauptverfasser: Chhetri, Mohan Baruwal, Forkan, Abdur Rahim Mohammad, Vo, Quoc Bao, Nepal, Surya, Kowalczyk, Ryszard
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1750
container_issue 6
container_start_page 1739
container_title IEEE transactions on services computing
container_volume 14
creator Chhetri, Mohan Baruwal
Forkan, Abdur Rahim Mohammad
Vo, Quoc Bao
Nepal, Surya
Kowalczyk, Ryszard
description Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scaling to handle workload fluctuations and do not leverage resource and contract heterogeneity to optimize cloud costs. In this paper, we propose a novel opportunistic resource scaling approach that exploits both resource and contract heterogeneity to achieve cost-effective resource allocations. We model resource allocation as an unbounded knapsack problem , and resource scaling as an one-step ahead resource allocation problem . Based on these models, we propose two scaling strategies: (a) delta capacity optimization , which focuses on optimizing costs for the difference between existing resource allocation and the required capacity based on the forecast workload, and (b) full capacity optimization , which focuses on optimizing costs for resource capacity corresponding to the forecast workload. We evaluate both strategies using two real world workload datasets, and compare them against three different scaling strategies. The results show that our proposed approach, particularly full capacity optimization, outperforms all of them and offers in excess of 70 percent cost savings compared to the traditional scaling approach.
doi_str_mv 10.1109/TSC.2019.2908647
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8678427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8678427</ieee_id><sourcerecordid>2607875780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2c8e6718c8ce92eea0ce3dab1154f574827ce5012b6a4895d51cceb255248a503</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4MoOKd3wUvBc2eSNk1yHGU6YTBwE7yFLH0dGbWpSQruv1_Lhnh67_D7fu_xIfRI8IwQLF-2m3JGMZEzKrEocn6FJkRmMiUZz6__7bfoLoQDxgUVQk7Q1-K3a5yNtt0nS4jg3R5asPGY1M4n665zPvatDdGa5AOC672BZGN0MwK2TcrG9VW6dCFClcy7rrFGR-vacI9uat0EeLjMKfp8XWzLZbpav72X81VqqCQxpUZAwYkwwoCkABobyCq9I4TlNeO5oNwAw4TuCp0LySpGjIEdZYzmQjOcTdHzubfz7qeHENVheLIdTipaYC4442JM4XPKeBeCh1p13n5rf1QEq9GfGvyp0Z-6-BuQpzNiAeAvLgoucsqzE2Y9bNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607875780</pqid></control><display><type>article</type><title>Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Chhetri, Mohan Baruwal ; Forkan, Abdur Rahim Mohammad ; Vo, Quoc Bao ; Nepal, Surya ; Kowalczyk, Ryszard</creator><creatorcontrib>Chhetri, Mohan Baruwal ; Forkan, Abdur Rahim Mohammad ; Vo, Quoc Bao ; Nepal, Surya ; Kowalczyk, Ryszard</creatorcontrib><description>Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scaling to handle workload fluctuations and do not leverage resource and contract heterogeneity to optimize cloud costs. In this paper, we propose a novel opportunistic resource scaling approach that exploits both resource and contract heterogeneity to achieve cost-effective resource allocations. We model resource allocation as an unbounded knapsack problem , and resource scaling as an one-step ahead resource allocation problem . Based on these models, we propose two scaling strategies: (a) delta capacity optimization , which focuses on optimizing costs for the difference between existing resource allocation and the required capacity based on the forecast workload, and (b) full capacity optimization , which focuses on optimizing costs for resource capacity corresponding to the forecast workload. We evaluate both strategies using two real world workload datasets, and compare them against three different scaling strategies. The results show that our proposed approach, particularly full capacity optimization, outperforms all of them and offers in excess of 70 percent cost savings compared to the traditional scaling approach.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2019.2908647</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Amazon EC2 ; Cloud computing ; cloud-based applications ; contract heterogeneity ; Contracts ; Cost control ; Cost optimization ; Costs ; Heterogeneity ; Internet of Things ; Knapsack problem ; Mathematical models ; Optimization ; Pricing ; Resource allocation ; resource heterogeneity ; Resource management ; Scaling ; Workload ; Workloads</subject><ispartof>IEEE transactions on services computing, 2021-11, Vol.14 (6), p.1739-1750</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2c8e6718c8ce92eea0ce3dab1154f574827ce5012b6a4895d51cceb255248a503</citedby><cites>FETCH-LOGICAL-c291t-2c8e6718c8ce92eea0ce3dab1154f574827ce5012b6a4895d51cceb255248a503</cites><orcidid>0000-0002-6138-7742 ; 0000-0003-0937-4028 ; 0000-0003-0237-1705 ; 0000-0002-7404-110X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8678427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8678427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chhetri, Mohan Baruwal</creatorcontrib><creatorcontrib>Forkan, Abdur Rahim Mohammad</creatorcontrib><creatorcontrib>Vo, Quoc Bao</creatorcontrib><creatorcontrib>Nepal, Surya</creatorcontrib><creatorcontrib>Kowalczyk, Ryszard</creatorcontrib><title>Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scaling to handle workload fluctuations and do not leverage resource and contract heterogeneity to optimize cloud costs. In this paper, we propose a novel opportunistic resource scaling approach that exploits both resource and contract heterogeneity to achieve cost-effective resource allocations. We model resource allocation as an unbounded knapsack problem , and resource scaling as an one-step ahead resource allocation problem . Based on these models, we propose two scaling strategies: (a) delta capacity optimization , which focuses on optimizing costs for the difference between existing resource allocation and the required capacity based on the forecast workload, and (b) full capacity optimization , which focuses on optimizing costs for resource capacity corresponding to the forecast workload. We evaluate both strategies using two real world workload datasets, and compare them against three different scaling strategies. The results show that our proposed approach, particularly full capacity optimization, outperforms all of them and offers in excess of 70 percent cost savings compared to the traditional scaling approach.</description><subject>Amazon EC2</subject><subject>Cloud computing</subject><subject>cloud-based applications</subject><subject>contract heterogeneity</subject><subject>Contracts</subject><subject>Cost control</subject><subject>Cost optimization</subject><subject>Costs</subject><subject>Heterogeneity</subject><subject>Internet of Things</subject><subject>Knapsack problem</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pricing</subject><subject>Resource allocation</subject><subject>resource heterogeneity</subject><subject>Resource management</subject><subject>Scaling</subject><subject>Workload</subject><subject>Workloads</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUh4MoOKd3wUvBc2eSNk1yHGU6YTBwE7yFLH0dGbWpSQruv1_Lhnh67_D7fu_xIfRI8IwQLF-2m3JGMZEzKrEocn6FJkRmMiUZz6__7bfoLoQDxgUVQk7Q1-K3a5yNtt0nS4jg3R5asPGY1M4n665zPvatDdGa5AOC672BZGN0MwK2TcrG9VW6dCFClcy7rrFGR-vacI9uat0EeLjMKfp8XWzLZbpav72X81VqqCQxpUZAwYkwwoCkABobyCq9I4TlNeO5oNwAw4TuCp0LySpGjIEdZYzmQjOcTdHzubfz7qeHENVheLIdTipaYC4442JM4XPKeBeCh1p13n5rf1QEq9GfGvyp0Z-6-BuQpzNiAeAvLgoucsqzE2Y9bNo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Chhetri, Mohan Baruwal</creator><creator>Forkan, Abdur Rahim Mohammad</creator><creator>Vo, Quoc Bao</creator><creator>Nepal, Surya</creator><creator>Kowalczyk, Ryszard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6138-7742</orcidid><orcidid>https://orcid.org/0000-0003-0937-4028</orcidid><orcidid>https://orcid.org/0000-0003-0237-1705</orcidid><orcidid>https://orcid.org/0000-0002-7404-110X</orcidid></search><sort><creationdate>20211101</creationdate><title>Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications</title><author>Chhetri, Mohan Baruwal ; Forkan, Abdur Rahim Mohammad ; Vo, Quoc Bao ; Nepal, Surya ; Kowalczyk, Ryszard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2c8e6718c8ce92eea0ce3dab1154f574827ce5012b6a4895d51cceb255248a503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amazon EC2</topic><topic>Cloud computing</topic><topic>cloud-based applications</topic><topic>contract heterogeneity</topic><topic>Contracts</topic><topic>Cost control</topic><topic>Cost optimization</topic><topic>Costs</topic><topic>Heterogeneity</topic><topic>Internet of Things</topic><topic>Knapsack problem</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pricing</topic><topic>Resource allocation</topic><topic>resource heterogeneity</topic><topic>Resource management</topic><topic>Scaling</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhetri, Mohan Baruwal</creatorcontrib><creatorcontrib>Forkan, Abdur Rahim Mohammad</creatorcontrib><creatorcontrib>Vo, Quoc Bao</creatorcontrib><creatorcontrib>Nepal, Surya</creatorcontrib><creatorcontrib>Kowalczyk, Ryszard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chhetri, Mohan Baruwal</au><au>Forkan, Abdur Rahim Mohammad</au><au>Vo, Quoc Bao</au><au>Nepal, Surya</au><au>Kowalczyk, Ryszard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>14</volume><issue>6</issue><spage>1739</spage><epage>1750</epage><pages>1739-1750</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scaling to handle workload fluctuations and do not leverage resource and contract heterogeneity to optimize cloud costs. In this paper, we propose a novel opportunistic resource scaling approach that exploits both resource and contract heterogeneity to achieve cost-effective resource allocations. We model resource allocation as an unbounded knapsack problem , and resource scaling as an one-step ahead resource allocation problem . Based on these models, we propose two scaling strategies: (a) delta capacity optimization , which focuses on optimizing costs for the difference between existing resource allocation and the required capacity based on the forecast workload, and (b) full capacity optimization , which focuses on optimizing costs for resource capacity corresponding to the forecast workload. We evaluate both strategies using two real world workload datasets, and compare them against three different scaling strategies. The results show that our proposed approach, particularly full capacity optimization, outperforms all of them and offers in excess of 70 percent cost savings compared to the traditional scaling approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2019.2908647</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6138-7742</orcidid><orcidid>https://orcid.org/0000-0003-0937-4028</orcidid><orcidid>https://orcid.org/0000-0003-0237-1705</orcidid><orcidid>https://orcid.org/0000-0002-7404-110X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1939-1374
ispartof IEEE transactions on services computing, 2021-11, Vol.14 (6), p.1739-1750
issn 1939-1374
1939-1374
2372-0204
language eng
recordid cdi_ieee_primary_8678427
source IEEE Electronic Library (IEL)
subjects Amazon EC2
Cloud computing
cloud-based applications
contract heterogeneity
Contracts
Cost control
Cost optimization
Costs
Heterogeneity
Internet of Things
Knapsack problem
Mathematical models
Optimization
Pricing
Resource allocation
resource heterogeneity
Resource management
Scaling
Workload
Workloads
title Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Heterogeneity%20for%20Opportunistic%20Resource%20Scaling%20in%20Cloud-Hosted%20Applications&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Chhetri,%20Mohan%20Baruwal&rft.date=2021-11-01&rft.volume=14&rft.issue=6&rft.spage=1739&rft.epage=1750&rft.pages=1739-1750&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2019.2908647&rft_dat=%3Cproquest_RIE%3E2607875780%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607875780&rft_id=info:pmid/&rft_ieee_id=8678427&rfr_iscdi=true