Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications
Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scalin...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on services computing 2021-11, Vol.14 (6), p.1739-1750 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1750 |
---|---|
container_issue | 6 |
container_start_page | 1739 |
container_title | IEEE transactions on services computing |
container_volume | 14 |
creator | Chhetri, Mohan Baruwal Forkan, Abdur Rahim Mohammad Vo, Quoc Bao Nepal, Surya Kowalczyk, Ryszard |
description | Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scaling to handle workload fluctuations and do not leverage resource and contract heterogeneity to optimize cloud costs. In this paper, we propose a novel opportunistic resource scaling approach that exploits both resource and contract heterogeneity to achieve cost-effective resource allocations. We model resource allocation as an unbounded knapsack problem , and resource scaling as an one-step ahead resource allocation problem . Based on these models, we propose two scaling strategies: (a) delta capacity optimization , which focuses on optimizing costs for the difference between existing resource allocation and the required capacity based on the forecast workload, and (b) full capacity optimization , which focuses on optimizing costs for resource capacity corresponding to the forecast workload. We evaluate both strategies using two real world workload datasets, and compare them against three different scaling strategies. The results show that our proposed approach, particularly full capacity optimization, outperforms all of them and offers in excess of 70 percent cost savings compared to the traditional scaling approach. |
doi_str_mv | 10.1109/TSC.2019.2908647 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8678427</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8678427</ieee_id><sourcerecordid>2607875780</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-2c8e6718c8ce92eea0ce3dab1154f574827ce5012b6a4895d51cceb255248a503</originalsourceid><addsrcrecordid>eNpNkMFLwzAUh4MoOKd3wUvBc2eSNk1yHGU6YTBwE7yFLH0dGbWpSQruv1_Lhnh67_D7fu_xIfRI8IwQLF-2m3JGMZEzKrEocn6FJkRmMiUZz6__7bfoLoQDxgUVQk7Q1-K3a5yNtt0nS4jg3R5asPGY1M4n665zPvatDdGa5AOC672BZGN0MwK2TcrG9VW6dCFClcy7rrFGR-vacI9uat0EeLjMKfp8XWzLZbpav72X81VqqCQxpUZAwYkwwoCkABobyCq9I4TlNeO5oNwAw4TuCp0LySpGjIEdZYzmQjOcTdHzubfz7qeHENVheLIdTipaYC4442JM4XPKeBeCh1p13n5rf1QEq9GfGvyp0Z-6-BuQpzNiAeAvLgoucsqzE2Y9bNo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607875780</pqid></control><display><type>article</type><title>Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Chhetri, Mohan Baruwal ; Forkan, Abdur Rahim Mohammad ; Vo, Quoc Bao ; Nepal, Surya ; Kowalczyk, Ryszard</creator><creatorcontrib>Chhetri, Mohan Baruwal ; Forkan, Abdur Rahim Mohammad ; Vo, Quoc Bao ; Nepal, Surya ; Kowalczyk, Ryszard</creatorcontrib><description>Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scaling to handle workload fluctuations and do not leverage resource and contract heterogeneity to optimize cloud costs. In this paper, we propose a novel opportunistic resource scaling approach that exploits both resource and contract heterogeneity to achieve cost-effective resource allocations. We model resource allocation as an unbounded knapsack problem , and resource scaling as an one-step ahead resource allocation problem . Based on these models, we propose two scaling strategies: (a) delta capacity optimization , which focuses on optimizing costs for the difference between existing resource allocation and the required capacity based on the forecast workload, and (b) full capacity optimization , which focuses on optimizing costs for resource capacity corresponding to the forecast workload. We evaluate both strategies using two real world workload datasets, and compare them against three different scaling strategies. The results show that our proposed approach, particularly full capacity optimization, outperforms all of them and offers in excess of 70 percent cost savings compared to the traditional scaling approach.</description><identifier>ISSN: 1939-1374</identifier><identifier>EISSN: 1939-1374</identifier><identifier>EISSN: 2372-0204</identifier><identifier>DOI: 10.1109/TSC.2019.2908647</identifier><identifier>CODEN: ITSCAD</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Amazon EC2 ; Cloud computing ; cloud-based applications ; contract heterogeneity ; Contracts ; Cost control ; Cost optimization ; Costs ; Heterogeneity ; Internet of Things ; Knapsack problem ; Mathematical models ; Optimization ; Pricing ; Resource allocation ; resource heterogeneity ; Resource management ; Scaling ; Workload ; Workloads</subject><ispartof>IEEE transactions on services computing, 2021-11, Vol.14 (6), p.1739-1750</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-2c8e6718c8ce92eea0ce3dab1154f574827ce5012b6a4895d51cceb255248a503</citedby><cites>FETCH-LOGICAL-c291t-2c8e6718c8ce92eea0ce3dab1154f574827ce5012b6a4895d51cceb255248a503</cites><orcidid>0000-0002-6138-7742 ; 0000-0003-0937-4028 ; 0000-0003-0237-1705 ; 0000-0002-7404-110X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8678427$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8678427$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chhetri, Mohan Baruwal</creatorcontrib><creatorcontrib>Forkan, Abdur Rahim Mohammad</creatorcontrib><creatorcontrib>Vo, Quoc Bao</creatorcontrib><creatorcontrib>Nepal, Surya</creatorcontrib><creatorcontrib>Kowalczyk, Ryszard</creatorcontrib><title>Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications</title><title>IEEE transactions on services computing</title><addtitle>TSC</addtitle><description>Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scaling to handle workload fluctuations and do not leverage resource and contract heterogeneity to optimize cloud costs. In this paper, we propose a novel opportunistic resource scaling approach that exploits both resource and contract heterogeneity to achieve cost-effective resource allocations. We model resource allocation as an unbounded knapsack problem , and resource scaling as an one-step ahead resource allocation problem . Based on these models, we propose two scaling strategies: (a) delta capacity optimization , which focuses on optimizing costs for the difference between existing resource allocation and the required capacity based on the forecast workload, and (b) full capacity optimization , which focuses on optimizing costs for resource capacity corresponding to the forecast workload. We evaluate both strategies using two real world workload datasets, and compare them against three different scaling strategies. The results show that our proposed approach, particularly full capacity optimization, outperforms all of them and offers in excess of 70 percent cost savings compared to the traditional scaling approach.</description><subject>Amazon EC2</subject><subject>Cloud computing</subject><subject>cloud-based applications</subject><subject>contract heterogeneity</subject><subject>Contracts</subject><subject>Cost control</subject><subject>Cost optimization</subject><subject>Costs</subject><subject>Heterogeneity</subject><subject>Internet of Things</subject><subject>Knapsack problem</subject><subject>Mathematical models</subject><subject>Optimization</subject><subject>Pricing</subject><subject>Resource allocation</subject><subject>resource heterogeneity</subject><subject>Resource management</subject><subject>Scaling</subject><subject>Workload</subject><subject>Workloads</subject><issn>1939-1374</issn><issn>1939-1374</issn><issn>2372-0204</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkMFLwzAUh4MoOKd3wUvBc2eSNk1yHGU6YTBwE7yFLH0dGbWpSQruv1_Lhnh67_D7fu_xIfRI8IwQLF-2m3JGMZEzKrEocn6FJkRmMiUZz6__7bfoLoQDxgUVQk7Q1-K3a5yNtt0nS4jg3R5asPGY1M4n665zPvatDdGa5AOC672BZGN0MwK2TcrG9VW6dCFClcy7rrFGR-vacI9uat0EeLjMKfp8XWzLZbpav72X81VqqCQxpUZAwYkwwoCkABobyCq9I4TlNeO5oNwAw4TuCp0LySpGjIEdZYzmQjOcTdHzubfz7qeHENVheLIdTipaYC4442JM4XPKeBeCh1p13n5rf1QEq9GfGvyp0Z-6-BuQpzNiAeAvLgoucsqzE2Y9bNo</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Chhetri, Mohan Baruwal</creator><creator>Forkan, Abdur Rahim Mohammad</creator><creator>Vo, Quoc Bao</creator><creator>Nepal, Surya</creator><creator>Kowalczyk, Ryszard</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6138-7742</orcidid><orcidid>https://orcid.org/0000-0003-0937-4028</orcidid><orcidid>https://orcid.org/0000-0003-0237-1705</orcidid><orcidid>https://orcid.org/0000-0002-7404-110X</orcidid></search><sort><creationdate>20211101</creationdate><title>Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications</title><author>Chhetri, Mohan Baruwal ; Forkan, Abdur Rahim Mohammad ; Vo, Quoc Bao ; Nepal, Surya ; Kowalczyk, Ryszard</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-2c8e6718c8ce92eea0ce3dab1154f574827ce5012b6a4895d51cceb255248a503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amazon EC2</topic><topic>Cloud computing</topic><topic>cloud-based applications</topic><topic>contract heterogeneity</topic><topic>Contracts</topic><topic>Cost control</topic><topic>Cost optimization</topic><topic>Costs</topic><topic>Heterogeneity</topic><topic>Internet of Things</topic><topic>Knapsack problem</topic><topic>Mathematical models</topic><topic>Optimization</topic><topic>Pricing</topic><topic>Resource allocation</topic><topic>resource heterogeneity</topic><topic>Resource management</topic><topic>Scaling</topic><topic>Workload</topic><topic>Workloads</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chhetri, Mohan Baruwal</creatorcontrib><creatorcontrib>Forkan, Abdur Rahim Mohammad</creatorcontrib><creatorcontrib>Vo, Quoc Bao</creatorcontrib><creatorcontrib>Nepal, Surya</creatorcontrib><creatorcontrib>Kowalczyk, Ryszard</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on services computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chhetri, Mohan Baruwal</au><au>Forkan, Abdur Rahim Mohammad</au><au>Vo, Quoc Bao</au><au>Nepal, Surya</au><au>Kowalczyk, Ryszard</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications</atitle><jtitle>IEEE transactions on services computing</jtitle><stitle>TSC</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>14</volume><issue>6</issue><spage>1739</spage><epage>1750</epage><pages>1739-1750</pages><issn>1939-1374</issn><eissn>1939-1374</eissn><eissn>2372-0204</eissn><coden>ITSCAD</coden><abstract>Cloud consumers have access to an increasingly diverse range of resource and contract options, but lack appropriate resource scaling solutions that can exploit this to minimize the cost of their cloud-hosted applications. Traditional approaches tend to use homogeneous resources and horizontal scaling to handle workload fluctuations and do not leverage resource and contract heterogeneity to optimize cloud costs. In this paper, we propose a novel opportunistic resource scaling approach that exploits both resource and contract heterogeneity to achieve cost-effective resource allocations. We model resource allocation as an unbounded knapsack problem , and resource scaling as an one-step ahead resource allocation problem . Based on these models, we propose two scaling strategies: (a) delta capacity optimization , which focuses on optimizing costs for the difference between existing resource allocation and the required capacity based on the forecast workload, and (b) full capacity optimization , which focuses on optimizing costs for resource capacity corresponding to the forecast workload. We evaluate both strategies using two real world workload datasets, and compare them against three different scaling strategies. The results show that our proposed approach, particularly full capacity optimization, outperforms all of them and offers in excess of 70 percent cost savings compared to the traditional scaling approach.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TSC.2019.2908647</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-6138-7742</orcidid><orcidid>https://orcid.org/0000-0003-0937-4028</orcidid><orcidid>https://orcid.org/0000-0003-0237-1705</orcidid><orcidid>https://orcid.org/0000-0002-7404-110X</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1939-1374 |
ispartof | IEEE transactions on services computing, 2021-11, Vol.14 (6), p.1739-1750 |
issn | 1939-1374 1939-1374 2372-0204 |
language | eng |
recordid | cdi_ieee_primary_8678427 |
source | IEEE Electronic Library (IEL) |
subjects | Amazon EC2 Cloud computing cloud-based applications contract heterogeneity Contracts Cost control Cost optimization Costs Heterogeneity Internet of Things Knapsack problem Mathematical models Optimization Pricing Resource allocation resource heterogeneity Resource management Scaling Workload Workloads |
title | Exploiting Heterogeneity for Opportunistic Resource Scaling in Cloud-Hosted Applications |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T14%3A20%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploiting%20Heterogeneity%20for%20Opportunistic%20Resource%20Scaling%20in%20Cloud-Hosted%20Applications&rft.jtitle=IEEE%20transactions%20on%20services%20computing&rft.au=Chhetri,%20Mohan%20Baruwal&rft.date=2021-11-01&rft.volume=14&rft.issue=6&rft.spage=1739&rft.epage=1750&rft.pages=1739-1750&rft.issn=1939-1374&rft.eissn=1939-1374&rft.coden=ITSCAD&rft_id=info:doi/10.1109/TSC.2019.2908647&rft_dat=%3Cproquest_RIE%3E2607875780%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2607875780&rft_id=info:pmid/&rft_ieee_id=8678427&rfr_iscdi=true |