A Theoretical Guideline for Designing an Effective Adaptive Particle Swarm

In this paper, the underlying assumptions that have been used for designing adaptive particle swarm optimization (PSO) algorithms in the past years are theoretically investigated. I relate these assumptions to the movement patterns of particles controlled by coefficient values (inertia weight and ac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on evolutionary computation 2020-02, Vol.24 (1), p.57-68
1. Verfasser: Bonyadi, Mohammad Reza
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 68
container_issue 1
container_start_page 57
container_title IEEE transactions on evolutionary computation
container_volume 24
creator Bonyadi, Mohammad Reza
description In this paper, the underlying assumptions that have been used for designing adaptive particle swarm optimization (PSO) algorithms in the past years are theoretically investigated. I relate these assumptions to the movement patterns of particles controlled by coefficient values (inertia weight and acceleration coefficients) and introduce three factors, namely the autocorrelation of the particle positions, the average movement distance of the particle in each iteration, and the focus of the search, that describe these movement patterns. I show how these factors represent movement patterns of a particle within a swarm and how they are affected by particle coefficients (i.e., inertia weight and acceleration coefficients). I derive equations that provide exact coefficient values to guarantee to achieve the desired movement pattern defined by these three factors within a swarm. I then relate these movements to the searching capability of particles and provide a guideline for designing potentially successful adaptive methods to control coefficients in particle swarm. Finally, I propose a new simple time adaptive particle swarm and compare its results with previous adaptive particle swarm approaches. Experiments show that the theoretical findings indeed provide a beneficial guideline for the successful adaptation of the coefficients in the PSO algorithm.
doi_str_mv 10.1109/TEVC.2019.2906894
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8672812</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672812</ieee_id><sourcerecordid>2349118991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2ed229552410a4b8212a530239286553013060a4eba52dc91231977f07aab97d3</originalsourceid><addsrcrecordid>eNo9kE9LAzEQxYMoWKsfQLwEPG_NzP7LHEutVSkoWMVbSHdna0q7W7NbxW9vaouneTDvzTx-QlyCGgAoupmN30YDVEADJJVpSo5EDyiBSCnMjoNWmqI81--n4qxtl0pBkgL1xONQzj648dy5wq7kZOtKXrmaZdV4ecutW9SuXkhby3FVcdG5L5bD0m7-xLP1IbZi-fJt_fpcnFR21fLFYfbF6914NrqPpk-Th9FwGhVIcRchl4iUppiAsslcI6BNY4Uxoc7SoCBWWdjw3KZYFgQYA-V5pXJr55SXcV9c7-9ufPO55bYzy2br6_DSYJwQgCaC4IK9q_BN23quzMa7tfU_BpTZITM7ZGaHzByQhczVPuOY-d-vsxx1aPEL06plRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2349118991</pqid></control><display><type>article</type><title>A Theoretical Guideline for Designing an Effective Adaptive Particle Swarm</title><source>IEEE Electronic Library (IEL)</source><creator>Bonyadi, Mohammad Reza</creator><creatorcontrib>Bonyadi, Mohammad Reza</creatorcontrib><description>In this paper, the underlying assumptions that have been used for designing adaptive particle swarm optimization (PSO) algorithms in the past years are theoretically investigated. I relate these assumptions to the movement patterns of particles controlled by coefficient values (inertia weight and acceleration coefficients) and introduce three factors, namely the autocorrelation of the particle positions, the average movement distance of the particle in each iteration, and the focus of the search, that describe these movement patterns. I show how these factors represent movement patterns of a particle within a swarm and how they are affected by particle coefficients (i.e., inertia weight and acceleration coefficients). I derive equations that provide exact coefficient values to guarantee to achieve the desired movement pattern defined by these three factors within a swarm. I then relate these movements to the searching capability of particles and provide a guideline for designing potentially successful adaptive methods to control coefficients in particle swarm. Finally, I propose a new simple time adaptive particle swarm and compare its results with previous adaptive particle swarm approaches. Experiments show that the theoretical findings indeed provide a beneficial guideline for the successful adaptation of the coefficients in the PSO algorithm.</description><identifier>ISSN: 1089-778X</identifier><identifier>EISSN: 1941-0026</identifier><identifier>DOI: 10.1109/TEVC.2019.2906894</identifier><identifier>CODEN: ITEVF5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Acceleration ; Adaptive algorithms ; Adaptive control ; Coefficients ; Control methods ; Convergence ; Correlation ; covariance ; Guidelines ; Indexes ; Inertia ; Linear programming ; Particle swarm optimization ; particle swarm optimization (PSO) ; stability ; Weight</subject><ispartof>IEEE transactions on evolutionary computation, 2020-02, Vol.24 (1), p.57-68</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2ed229552410a4b8212a530239286553013060a4eba52dc91231977f07aab97d3</citedby><cites>FETCH-LOGICAL-c293t-2ed229552410a4b8212a530239286553013060a4eba52dc91231977f07aab97d3</cites><orcidid>0000-0003-0061-4902</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672812$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8672812$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bonyadi, Mohammad Reza</creatorcontrib><title>A Theoretical Guideline for Designing an Effective Adaptive Particle Swarm</title><title>IEEE transactions on evolutionary computation</title><addtitle>TEVC</addtitle><description>In this paper, the underlying assumptions that have been used for designing adaptive particle swarm optimization (PSO) algorithms in the past years are theoretically investigated. I relate these assumptions to the movement patterns of particles controlled by coefficient values (inertia weight and acceleration coefficients) and introduce three factors, namely the autocorrelation of the particle positions, the average movement distance of the particle in each iteration, and the focus of the search, that describe these movement patterns. I show how these factors represent movement patterns of a particle within a swarm and how they are affected by particle coefficients (i.e., inertia weight and acceleration coefficients). I derive equations that provide exact coefficient values to guarantee to achieve the desired movement pattern defined by these three factors within a swarm. I then relate these movements to the searching capability of particles and provide a guideline for designing potentially successful adaptive methods to control coefficients in particle swarm. Finally, I propose a new simple time adaptive particle swarm and compare its results with previous adaptive particle swarm approaches. Experiments show that the theoretical findings indeed provide a beneficial guideline for the successful adaptation of the coefficients in the PSO algorithm.</description><subject>Acceleration</subject><subject>Adaptive algorithms</subject><subject>Adaptive control</subject><subject>Coefficients</subject><subject>Control methods</subject><subject>Convergence</subject><subject>Correlation</subject><subject>covariance</subject><subject>Guidelines</subject><subject>Indexes</subject><subject>Inertia</subject><subject>Linear programming</subject><subject>Particle swarm optimization</subject><subject>particle swarm optimization (PSO)</subject><subject>stability</subject><subject>Weight</subject><issn>1089-778X</issn><issn>1941-0026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE9LAzEQxYMoWKsfQLwEPG_NzP7LHEutVSkoWMVbSHdna0q7W7NbxW9vaouneTDvzTx-QlyCGgAoupmN30YDVEADJJVpSo5EDyiBSCnMjoNWmqI81--n4qxtl0pBkgL1xONQzj648dy5wq7kZOtKXrmaZdV4ecutW9SuXkhby3FVcdG5L5bD0m7-xLP1IbZi-fJt_fpcnFR21fLFYfbF6914NrqPpk-Th9FwGhVIcRchl4iUppiAsslcI6BNY4Uxoc7SoCBWWdjw3KZYFgQYA-V5pXJr55SXcV9c7-9ufPO55bYzy2br6_DSYJwQgCaC4IK9q_BN23quzMa7tfU_BpTZITM7ZGaHzByQhczVPuOY-d-vsxx1aPEL06plRw</recordid><startdate>20200201</startdate><enddate>20200201</enddate><creator>Bonyadi, Mohammad Reza</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-0061-4902</orcidid></search><sort><creationdate>20200201</creationdate><title>A Theoretical Guideline for Designing an Effective Adaptive Particle Swarm</title><author>Bonyadi, Mohammad Reza</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2ed229552410a4b8212a530239286553013060a4eba52dc91231977f07aab97d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Acceleration</topic><topic>Adaptive algorithms</topic><topic>Adaptive control</topic><topic>Coefficients</topic><topic>Control methods</topic><topic>Convergence</topic><topic>Correlation</topic><topic>covariance</topic><topic>Guidelines</topic><topic>Indexes</topic><topic>Inertia</topic><topic>Linear programming</topic><topic>Particle swarm optimization</topic><topic>particle swarm optimization (PSO)</topic><topic>stability</topic><topic>Weight</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bonyadi, Mohammad Reza</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on evolutionary computation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bonyadi, Mohammad Reza</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Theoretical Guideline for Designing an Effective Adaptive Particle Swarm</atitle><jtitle>IEEE transactions on evolutionary computation</jtitle><stitle>TEVC</stitle><date>2020-02-01</date><risdate>2020</risdate><volume>24</volume><issue>1</issue><spage>57</spage><epage>68</epage><pages>57-68</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><coden>ITEVF5</coden><abstract>In this paper, the underlying assumptions that have been used for designing adaptive particle swarm optimization (PSO) algorithms in the past years are theoretically investigated. I relate these assumptions to the movement patterns of particles controlled by coefficient values (inertia weight and acceleration coefficients) and introduce three factors, namely the autocorrelation of the particle positions, the average movement distance of the particle in each iteration, and the focus of the search, that describe these movement patterns. I show how these factors represent movement patterns of a particle within a swarm and how they are affected by particle coefficients (i.e., inertia weight and acceleration coefficients). I derive equations that provide exact coefficient values to guarantee to achieve the desired movement pattern defined by these three factors within a swarm. I then relate these movements to the searching capability of particles and provide a guideline for designing potentially successful adaptive methods to control coefficients in particle swarm. Finally, I propose a new simple time adaptive particle swarm and compare its results with previous adaptive particle swarm approaches. Experiments show that the theoretical findings indeed provide a beneficial guideline for the successful adaptation of the coefficients in the PSO algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TEVC.2019.2906894</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0061-4902</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE transactions on evolutionary computation, 2020-02, Vol.24 (1), p.57-68
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_8672812
source IEEE Electronic Library (IEL)
subjects Acceleration
Adaptive algorithms
Adaptive control
Coefficients
Control methods
Convergence
Correlation
covariance
Guidelines
Indexes
Inertia
Linear programming
Particle swarm optimization
particle swarm optimization (PSO)
stability
Weight
title A Theoretical Guideline for Designing an Effective Adaptive Particle Swarm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T21%3A40%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Theoretical%20Guideline%20for%20Designing%20an%20Effective%20Adaptive%20Particle%20Swarm&rft.jtitle=IEEE%20transactions%20on%20evolutionary%20computation&rft.au=Bonyadi,%20Mohammad%20Reza&rft.date=2020-02-01&rft.volume=24&rft.issue=1&rft.spage=57&rft.epage=68&rft.pages=57-68&rft.issn=1089-778X&rft.eissn=1941-0026&rft.coden=ITEVF5&rft_id=info:doi/10.1109/TEVC.2019.2906894&rft_dat=%3Cproquest_RIE%3E2349118991%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2349118991&rft_id=info:pmid/&rft_ieee_id=8672812&rfr_iscdi=true