A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images

Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segment...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-10, Vol.38 (10), p.2434-2444
Hauptverfasser: Playout, Clement, Duval, Renaud, Cheriet, Farida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2444
container_issue 10
container_start_page 2434
container_title IEEE transactions on medical imaging
container_volume 38
creator Playout, Clement
Duval, Renaud
Cheriet, Farida
description Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art.
doi_str_mv 10.1109/TMI.2019.2906319
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8672120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672120</ieee_id><sourcerecordid>2197899813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-4b0e0b2f68d7f455299423b02b7332a0456992ebd6ee4782cc425fb151f0c5d23</originalsourceid><addsrcrecordid>eNpdkE1LHEEQhptgiBuTeyAgDbnkMmt1dffM9HGRGBdWBTUkt6FnpsaMzsfaH4L_Pi27eggUFEU9VfA-jH0RsBQCzMntxXqJIMwSDeRSmHdsIbQuM9TqzwFbABZlBpDjIfvo_T2AUBrMB3YowUApTLFg9Ypfzk808N9kH4ZnfhO35J56Ty2_iEPog_UPfOWav32gJkRHvJsdv6bQT3bgG_L9PHl-Q3cjTcGGNPFUZ3Fqo-fr0d6R_8Ted3bw9Hnfj9ivsx-3p-fZ5urn-nS1yRqpipCpGghq7PKyLTqlNRqjUNaAdSElWlA6NwapbnMiVZTYNAp1VwstOmh0i_KIfd_93br5MZIP1dj7hobBTjRHX2EKXBpTCpnQb_-h93N0KVGiJICUoA0kCnZU42bvHXXV1vWjdc-VgOrFf5X8Vy_-q73_dHK8fxzrkdq3g1fhCfi6A3oieluXeYECQf4DcciIZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300330590</pqid></control><display><type>article</type><title>A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images</title><source>IEEE Electronic Library (IEL)</source><creator>Playout, Clement ; Duval, Renaud ; Cheriet, Farida</creator><creatorcontrib>Playout, Clement ; Duval, Renaud ; Cheriet, Farida</creatorcontrib><description>Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2906319</identifier><identifier>PMID: 30908197</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Architecture ; Color vision ; Computer-aided diagnostic ; Databases, Factual ; Decision making ; Diagnostic Techniques, Ophthalmological ; Diseases ; Feature extraction ; fundus imaging ; Fundus Oculi ; Ground truth ; Humans ; Image enhancement ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Lesions ; lesions segmentations ; Medical diagnosis ; Neural networks ; Pixels ; Retina ; Retina - diagnostic imaging ; Retinal Diseases - diagnostic imaging ; Retinopathy ; ROC Curve ; screening ; Supervised learning ; Supervised Machine Learning ; Task analysis ; Training</subject><ispartof>IEEE transactions on medical imaging, 2019-10, Vol.38 (10), p.2434-2444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-4b0e0b2f68d7f455299423b02b7332a0456992ebd6ee4782cc425fb151f0c5d23</citedby><cites>FETCH-LOGICAL-c347t-4b0e0b2f68d7f455299423b02b7332a0456992ebd6ee4782cc425fb151f0c5d23</cites><orcidid>0000-0002-0978-3588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8672120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30908197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Playout, Clement</creatorcontrib><creatorcontrib>Duval, Renaud</creatorcontrib><creatorcontrib>Cheriet, Farida</creatorcontrib><title>A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art.</description><subject>Architecture</subject><subject>Color vision</subject><subject>Computer-aided diagnostic</subject><subject>Databases, Factual</subject><subject>Decision making</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>fundus imaging</subject><subject>Fundus Oculi</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>lesions segmentations</subject><subject>Medical diagnosis</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Retina</subject><subject>Retina - diagnostic imaging</subject><subject>Retinal Diseases - diagnostic imaging</subject><subject>Retinopathy</subject><subject>ROC Curve</subject><subject>screening</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LHEEQhptgiBuTeyAgDbnkMmt1dffM9HGRGBdWBTUkt6FnpsaMzsfaH4L_Pi27eggUFEU9VfA-jH0RsBQCzMntxXqJIMwSDeRSmHdsIbQuM9TqzwFbABZlBpDjIfvo_T2AUBrMB3YowUApTLFg9Ypfzk808N9kH4ZnfhO35J56Ty2_iEPog_UPfOWav32gJkRHvJsdv6bQT3bgG_L9PHl-Q3cjTcGGNPFUZ3Fqo-fr0d6R_8Ted3bw9Hnfj9ivsx-3p-fZ5urn-nS1yRqpipCpGghq7PKyLTqlNRqjUNaAdSElWlA6NwapbnMiVZTYNAp1VwstOmh0i_KIfd_93br5MZIP1dj7hobBTjRHX2EKXBpTCpnQb_-h93N0KVGiJICUoA0kCnZU42bvHXXV1vWjdc-VgOrFf5X8Vy_-q73_dHK8fxzrkdq3g1fhCfi6A3oieluXeYECQf4DcciIZg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Playout, Clement</creator><creator>Duval, Renaud</creator><creator>Cheriet, Farida</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0978-3588</orcidid></search><sort><creationdate>20191001</creationdate><title>A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images</title><author>Playout, Clement ; Duval, Renaud ; Cheriet, Farida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-4b0e0b2f68d7f455299423b02b7332a0456992ebd6ee4782cc425fb151f0c5d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Color vision</topic><topic>Computer-aided diagnostic</topic><topic>Databases, Factual</topic><topic>Decision making</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>fundus imaging</topic><topic>Fundus Oculi</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>lesions segmentations</topic><topic>Medical diagnosis</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Retina</topic><topic>Retina - diagnostic imaging</topic><topic>Retinal Diseases - diagnostic imaging</topic><topic>Retinopathy</topic><topic>ROC Curve</topic><topic>screening</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Playout, Clement</creatorcontrib><creatorcontrib>Duval, Renaud</creatorcontrib><creatorcontrib>Cheriet, Farida</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Playout, Clement</au><au>Duval, Renaud</au><au>Cheriet, Farida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>38</volume><issue>10</issue><spage>2434</spage><epage>2444</epage><pages>2434-2444</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30908197</pmid><doi>10.1109/TMI.2019.2906319</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0978-3588</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2019-10, Vol.38 (10), p.2434-2444
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_8672120
source IEEE Electronic Library (IEL)
subjects Architecture
Color vision
Computer-aided diagnostic
Databases, Factual
Decision making
Diagnostic Techniques, Ophthalmological
Diseases
Feature extraction
fundus imaging
Fundus Oculi
Ground truth
Humans
Image enhancement
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Lesions
lesions segmentations
Medical diagnosis
Neural networks
Pixels
Retina
Retina - diagnostic imaging
Retinal Diseases - diagnostic imaging
Retinopathy
ROC Curve
screening
Supervised learning
Supervised Machine Learning
Task analysis
Training
title A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Weakly%20Supervised%20Multitask%20Architecture%20for%20Retinal%20Lesions%20Segmentation%20on%20Fundus%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Playout,%20Clement&rft.date=2019-10-01&rft.volume=38&rft.issue=10&rft.spage=2434&rft.epage=2444&rft.pages=2434-2444&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2906319&rft_dat=%3Cproquest_RIE%3E2197899813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300330590&rft_id=info:pmid/30908197&rft_ieee_id=8672120&rfr_iscdi=true