A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images
Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segment...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2019-10, Vol.38 (10), p.2434-2444 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2444 |
---|---|
container_issue | 10 |
container_start_page | 2434 |
container_title | IEEE transactions on medical imaging |
container_volume | 38 |
creator | Playout, Clement Duval, Renaud Cheriet, Farida |
description | Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art. |
doi_str_mv | 10.1109/TMI.2019.2906319 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8672120</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8672120</ieee_id><sourcerecordid>2197899813</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-4b0e0b2f68d7f455299423b02b7332a0456992ebd6ee4782cc425fb151f0c5d23</originalsourceid><addsrcrecordid>eNpdkE1LHEEQhptgiBuTeyAgDbnkMmt1dffM9HGRGBdWBTUkt6FnpsaMzsfaH4L_Pi27eggUFEU9VfA-jH0RsBQCzMntxXqJIMwSDeRSmHdsIbQuM9TqzwFbABZlBpDjIfvo_T2AUBrMB3YowUApTLFg9Ypfzk808N9kH4ZnfhO35J56Ty2_iEPog_UPfOWav32gJkRHvJsdv6bQT3bgG_L9PHl-Q3cjTcGGNPFUZ3Fqo-fr0d6R_8Ted3bw9Hnfj9ivsx-3p-fZ5urn-nS1yRqpipCpGghq7PKyLTqlNRqjUNaAdSElWlA6NwapbnMiVZTYNAp1VwstOmh0i_KIfd_93br5MZIP1dj7hobBTjRHX2EKXBpTCpnQb_-h93N0KVGiJICUoA0kCnZU42bvHXXV1vWjdc-VgOrFf5X8Vy_-q73_dHK8fxzrkdq3g1fhCfi6A3oieluXeYECQf4DcciIZg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300330590</pqid></control><display><type>article</type><title>A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images</title><source>IEEE Electronic Library (IEL)</source><creator>Playout, Clement ; Duval, Renaud ; Cheriet, Farida</creator><creatorcontrib>Playout, Clement ; Duval, Renaud ; Cheriet, Farida</creatorcontrib><description>Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2906319</identifier><identifier>PMID: 30908197</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Architecture ; Color vision ; Computer-aided diagnostic ; Databases, Factual ; Decision making ; Diagnostic Techniques, Ophthalmological ; Diseases ; Feature extraction ; fundus imaging ; Fundus Oculi ; Ground truth ; Humans ; Image enhancement ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Lesions ; lesions segmentations ; Medical diagnosis ; Neural networks ; Pixels ; Retina ; Retina - diagnostic imaging ; Retinal Diseases - diagnostic imaging ; Retinopathy ; ROC Curve ; screening ; Supervised learning ; Supervised Machine Learning ; Task analysis ; Training</subject><ispartof>IEEE transactions on medical imaging, 2019-10, Vol.38 (10), p.2434-2444</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-4b0e0b2f68d7f455299423b02b7332a0456992ebd6ee4782cc425fb151f0c5d23</citedby><cites>FETCH-LOGICAL-c347t-4b0e0b2f68d7f455299423b02b7332a0456992ebd6ee4782cc425fb151f0c5d23</cites><orcidid>0000-0002-0978-3588</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8672120$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,794,27907,27908,54741</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8672120$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30908197$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Playout, Clement</creatorcontrib><creatorcontrib>Duval, Renaud</creatorcontrib><creatorcontrib>Cheriet, Farida</creatorcontrib><title>A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art.</description><subject>Architecture</subject><subject>Color vision</subject><subject>Computer-aided diagnostic</subject><subject>Databases, Factual</subject><subject>Decision making</subject><subject>Diagnostic Techniques, Ophthalmological</subject><subject>Diseases</subject><subject>Feature extraction</subject><subject>fundus imaging</subject><subject>Fundus Oculi</subject><subject>Ground truth</subject><subject>Humans</subject><subject>Image enhancement</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Lesions</subject><subject>lesions segmentations</subject><subject>Medical diagnosis</subject><subject>Neural networks</subject><subject>Pixels</subject><subject>Retina</subject><subject>Retina - diagnostic imaging</subject><subject>Retinal Diseases - diagnostic imaging</subject><subject>Retinopathy</subject><subject>ROC Curve</subject><subject>screening</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Task analysis</subject><subject>Training</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkE1LHEEQhptgiBuTeyAgDbnkMmt1dffM9HGRGBdWBTUkt6FnpsaMzsfaH4L_Pi27eggUFEU9VfA-jH0RsBQCzMntxXqJIMwSDeRSmHdsIbQuM9TqzwFbABZlBpDjIfvo_T2AUBrMB3YowUApTLFg9Ypfzk808N9kH4ZnfhO35J56Ty2_iEPog_UPfOWav32gJkRHvJsdv6bQT3bgG_L9PHl-Q3cjTcGGNPFUZ3Fqo-fr0d6R_8Ted3bw9Hnfj9ivsx-3p-fZ5urn-nS1yRqpipCpGghq7PKyLTqlNRqjUNaAdSElWlA6NwapbnMiVZTYNAp1VwstOmh0i_KIfd_93br5MZIP1dj7hobBTjRHX2EKXBpTCpnQb_-h93N0KVGiJICUoA0kCnZU42bvHXXV1vWjdc-VgOrFf5X8Vy_-q73_dHK8fxzrkdq3g1fhCfi6A3oieluXeYECQf4DcciIZg</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Playout, Clement</creator><creator>Duval, Renaud</creator><creator>Cheriet, Farida</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0978-3588</orcidid></search><sort><creationdate>20191001</creationdate><title>A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images</title><author>Playout, Clement ; Duval, Renaud ; Cheriet, Farida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-4b0e0b2f68d7f455299423b02b7332a0456992ebd6ee4782cc425fb151f0c5d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Architecture</topic><topic>Color vision</topic><topic>Computer-aided diagnostic</topic><topic>Databases, Factual</topic><topic>Decision making</topic><topic>Diagnostic Techniques, Ophthalmological</topic><topic>Diseases</topic><topic>Feature extraction</topic><topic>fundus imaging</topic><topic>Fundus Oculi</topic><topic>Ground truth</topic><topic>Humans</topic><topic>Image enhancement</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Lesions</topic><topic>lesions segmentations</topic><topic>Medical diagnosis</topic><topic>Neural networks</topic><topic>Pixels</topic><topic>Retina</topic><topic>Retina - diagnostic imaging</topic><topic>Retinal Diseases - diagnostic imaging</topic><topic>Retinopathy</topic><topic>ROC Curve</topic><topic>screening</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Task analysis</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Playout, Clement</creatorcontrib><creatorcontrib>Duval, Renaud</creatorcontrib><creatorcontrib>Cheriet, Farida</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Playout, Clement</au><au>Duval, Renaud</au><au>Cheriet, Farida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-10-01</date><risdate>2019</risdate><volume>38</volume><issue>10</issue><spage>2434</spage><epage>2444</epage><pages>2434-2444</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Obtaining the complete segmentation map of retinal lesions is the first step toward an automated diagnosis tool for retinopathy that is interpretable in its decision-making. However, the limited availability of ground truth lesion detection maps at a pixel level restricts the ability of deep segmentation neural networks to generalize over large databases. In this paper, we propose a novel approach for training a convolutional multi-task architecture with supervised learning and reinforcing it with weakly supervised learning. The architecture is simultaneously trained for three tasks: segmentation of red lesions and of bright lesions, those two tasks done concurrently with lesion detection. In addition, we propose and discuss the advantages of a new preprocessing method that guarantees the color consistency between the raw image and its enhanced version. Our complete system produces segmentations of both red and bright lesions. The method is validated at the pixel level and per-image using four databases and a cross-validation strategy. When evaluated on the task of screening for the presence or absence of lesions on the Messidor image set, the proposed method achieves an area under the ROC curve of 0.839, comparable with the state-of-the-art.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30908197</pmid><doi>10.1109/TMI.2019.2906319</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0978-3588</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2019-10, Vol.38 (10), p.2434-2444 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_8672120 |
source | IEEE Electronic Library (IEL) |
subjects | Architecture Color vision Computer-aided diagnostic Databases, Factual Decision making Diagnostic Techniques, Ophthalmological Diseases Feature extraction fundus imaging Fundus Oculi Ground truth Humans Image enhancement Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Lesions lesions segmentations Medical diagnosis Neural networks Pixels Retina Retina - diagnostic imaging Retinal Diseases - diagnostic imaging Retinopathy ROC Curve screening Supervised learning Supervised Machine Learning Task analysis Training |
title | A Novel Weakly Supervised Multitask Architecture for Retinal Lesions Segmentation on Fundus Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A22%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Weakly%20Supervised%20Multitask%20Architecture%20for%20Retinal%20Lesions%20Segmentation%20on%20Fundus%20Images&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Playout,%20Clement&rft.date=2019-10-01&rft.volume=38&rft.issue=10&rft.spage=2434&rft.epage=2444&rft.pages=2434-2444&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2906319&rft_dat=%3Cproquest_RIE%3E2197899813%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300330590&rft_id=info:pmid/30908197&rft_ieee_id=8672120&rfr_iscdi=true |