String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons
Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of th...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on intelligent vehicles 2019-06, Vol.4 (2), p.186-196 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 196 |
---|---|
container_issue | 2 |
container_start_page | 186 |
container_title | IEEE transactions on intelligent vehicles |
container_volume | 4 |
creator | van Nunen, Ellen Reinders, Joey Semsar-Kazerooni, Elham van de Wouw, Nathan |
description | Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of the technological challenges is how to guarantee string stability (the ability to avoid amplification of dynamic vehicle responses along the string of vehicles) under nominal operational conditions. The second challenge is how to apply this solution to heterogeneous vehicles. The third challenge is how to maintain confidentiality of the vehicle parameters. Finally, the fourth challenge is to find a method which improves robustness against wireless packet loss. This paper proposes a model predictive control approach in combination with a feed-forward control design, which is based on a shared vector of predicted accelerations over a finite time horizon. This approach is shown to be applicable to a heterogeneous sequence of vehicles, while the vehicle parameters remain confidential. In previous works such an approach has shown to increase robustness against packet losses. Conditions for string stability are presented for the nominal operational conditions. Experimental results are presented and indeed demonstrate string stable behavior. |
doi_str_mv | 10.1109/TIV.2019.2904418 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8671766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8671766</ieee_id><sourcerecordid>2296108831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d7f0c28adba1698063953254f7ae88770696d630f68a76ab395aa90aa738e9f93</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsNTeBS8Bz6mzu-1-HEtRW6hYaPUmyzaZlJSYjbsbwf--qame5s28NzPwI-SWwphS0A_b5fuYAdVjpmEyoeqCDBiXOlVde_mn1VRdk1EIBwCgQjEFekA-NtGX9T7ZRLurMHlxOVbJ2mNeZrH8xmTuXIPe_upZbpt-6NsynLw6elclhfPJAiN6t8caXRuSdWWjc3W4IVeFrQKOznVI3p4et_NFunp9Xs5nqzTjnMc0lwVkTNl8Z6nQCgTXU86mk0JaVEpKEFrkgkMhlJXC7jrbWg3WSq5QF5oPyX1_t_Huq8UQzcG1vu5eGsa0oKAUp10K-lTmXQgeC9P48tP6H0PBnDiajqM5cTRnjt3KXb9SIuJ_XAlJpRD8CPc8bng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296108831</pqid></control><display><type>article</type><title>String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons</title><source>IEEE Electronic Library (IEL)</source><creator>van Nunen, Ellen ; Reinders, Joey ; Semsar-Kazerooni, Elham ; van de Wouw, Nathan</creator><creatorcontrib>van Nunen, Ellen ; Reinders, Joey ; Semsar-Kazerooni, Elham ; van de Wouw, Nathan</creatorcontrib><description>Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of the technological challenges is how to guarantee string stability (the ability to avoid amplification of dynamic vehicle responses along the string of vehicles) under nominal operational conditions. The second challenge is how to apply this solution to heterogeneous vehicles. The third challenge is how to maintain confidentiality of the vehicle parameters. Finally, the fourth challenge is to find a method which improves robustness against wireless packet loss. This paper proposes a model predictive control approach in combination with a feed-forward control design, which is based on a shared vector of predicted accelerations over a finite time horizon. This approach is shown to be applicable to a heterogeneous sequence of vehicles, while the vehicle parameters remain confidential. In previous works such an approach has shown to increase robustness against packet losses. Conditions for string stability are presented for the nominal operational conditions. Experimental results are presented and indeed demonstrate string stable behavior.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2019.2904418</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Adaptive control ; Automobiles ; Control theory ; cooperative adaptive cruise control ; Cooperative control ; Cruise control ; Delays ; Dynamic stability ; Feedforward control ; Heterogeneous platooning ; Mathematical models ; model predictive control ; Packet loss ; Parameters ; Platooning ; Predictive control ; Robustness ; Safety ; Shock waves ; Stability analysis ; string stability ; Traffic capacity ; Traffic congestion ; Traffic jams ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE transactions on intelligent vehicles, 2019-06, Vol.4 (2), p.186-196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d7f0c28adba1698063953254f7ae88770696d630f68a76ab395aa90aa738e9f93</citedby><cites>FETCH-LOGICAL-c333t-d7f0c28adba1698063953254f7ae88770696d630f68a76ab395aa90aa738e9f93</cites><orcidid>0000-0002-6745-9137 ; 0000-0001-8888-2033 ; 0000-0003-0813-1489 ; 0000-0002-2339-145X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8671766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8671766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Nunen, Ellen</creatorcontrib><creatorcontrib>Reinders, Joey</creatorcontrib><creatorcontrib>Semsar-Kazerooni, Elham</creatorcontrib><creatorcontrib>van de Wouw, Nathan</creatorcontrib><title>String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of the technological challenges is how to guarantee string stability (the ability to avoid amplification of dynamic vehicle responses along the string of vehicles) under nominal operational conditions. The second challenge is how to apply this solution to heterogeneous vehicles. The third challenge is how to maintain confidentiality of the vehicle parameters. Finally, the fourth challenge is to find a method which improves robustness against wireless packet loss. This paper proposes a model predictive control approach in combination with a feed-forward control design, which is based on a shared vector of predicted accelerations over a finite time horizon. This approach is shown to be applicable to a heterogeneous sequence of vehicles, while the vehicle parameters remain confidential. In previous works such an approach has shown to increase robustness against packet losses. Conditions for string stability are presented for the nominal operational conditions. Experimental results are presented and indeed demonstrate string stable behavior.</description><subject>Acceleration</subject><subject>Adaptive control</subject><subject>Automobiles</subject><subject>Control theory</subject><subject>cooperative adaptive cruise control</subject><subject>Cooperative control</subject><subject>Cruise control</subject><subject>Delays</subject><subject>Dynamic stability</subject><subject>Feedforward control</subject><subject>Heterogeneous platooning</subject><subject>Mathematical models</subject><subject>model predictive control</subject><subject>Packet loss</subject><subject>Parameters</subject><subject>Platooning</subject><subject>Predictive control</subject><subject>Robustness</subject><subject>Safety</subject><subject>Shock waves</subject><subject>Stability analysis</subject><subject>string stability</subject><subject>Traffic capacity</subject><subject>Traffic congestion</subject><subject>Traffic jams</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsNTeBS8Bz6mzu-1-HEtRW6hYaPUmyzaZlJSYjbsbwf--qame5s28NzPwI-SWwphS0A_b5fuYAdVjpmEyoeqCDBiXOlVde_mn1VRdk1EIBwCgQjEFekA-NtGX9T7ZRLurMHlxOVbJ2mNeZrH8xmTuXIPe_upZbpt-6NsynLw6elclhfPJAiN6t8caXRuSdWWjc3W4IVeFrQKOznVI3p4et_NFunp9Xs5nqzTjnMc0lwVkTNl8Z6nQCgTXU86mk0JaVEpKEFrkgkMhlJXC7jrbWg3WSq5QF5oPyX1_t_Huq8UQzcG1vu5eGsa0oKAUp10K-lTmXQgeC9P48tP6H0PBnDiajqM5cTRnjt3KXb9SIuJ_XAlJpRD8CPc8bng</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>van Nunen, Ellen</creator><creator>Reinders, Joey</creator><creator>Semsar-Kazerooni, Elham</creator><creator>van de Wouw, Nathan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6745-9137</orcidid><orcidid>https://orcid.org/0000-0001-8888-2033</orcidid><orcidid>https://orcid.org/0000-0003-0813-1489</orcidid><orcidid>https://orcid.org/0000-0002-2339-145X</orcidid></search><sort><creationdate>20190601</creationdate><title>String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons</title><author>van Nunen, Ellen ; Reinders, Joey ; Semsar-Kazerooni, Elham ; van de Wouw, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d7f0c28adba1698063953254f7ae88770696d630f68a76ab395aa90aa738e9f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Adaptive control</topic><topic>Automobiles</topic><topic>Control theory</topic><topic>cooperative adaptive cruise control</topic><topic>Cooperative control</topic><topic>Cruise control</topic><topic>Delays</topic><topic>Dynamic stability</topic><topic>Feedforward control</topic><topic>Heterogeneous platooning</topic><topic>Mathematical models</topic><topic>model predictive control</topic><topic>Packet loss</topic><topic>Parameters</topic><topic>Platooning</topic><topic>Predictive control</topic><topic>Robustness</topic><topic>Safety</topic><topic>Shock waves</topic><topic>Stability analysis</topic><topic>string stability</topic><topic>Traffic capacity</topic><topic>Traffic congestion</topic><topic>Traffic jams</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Nunen, Ellen</creatorcontrib><creatorcontrib>Reinders, Joey</creatorcontrib><creatorcontrib>Semsar-Kazerooni, Elham</creatorcontrib><creatorcontrib>van de Wouw, Nathan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Nunen, Ellen</au><au>Reinders, Joey</au><au>Semsar-Kazerooni, Elham</au><au>van de Wouw, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>186</spage><epage>196</epage><pages>186-196</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of the technological challenges is how to guarantee string stability (the ability to avoid amplification of dynamic vehicle responses along the string of vehicles) under nominal operational conditions. The second challenge is how to apply this solution to heterogeneous vehicles. The third challenge is how to maintain confidentiality of the vehicle parameters. Finally, the fourth challenge is to find a method which improves robustness against wireless packet loss. This paper proposes a model predictive control approach in combination with a feed-forward control design, which is based on a shared vector of predicted accelerations over a finite time horizon. This approach is shown to be applicable to a heterogeneous sequence of vehicles, while the vehicle parameters remain confidential. In previous works such an approach has shown to increase robustness against packet losses. Conditions for string stability are presented for the nominal operational conditions. Experimental results are presented and indeed demonstrate string stable behavior.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2019.2904418</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6745-9137</orcidid><orcidid>https://orcid.org/0000-0001-8888-2033</orcidid><orcidid>https://orcid.org/0000-0003-0813-1489</orcidid><orcidid>https://orcid.org/0000-0002-2339-145X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2379-8858 |
ispartof | IEEE transactions on intelligent vehicles, 2019-06, Vol.4 (2), p.186-196 |
issn | 2379-8858 2379-8904 |
language | eng |
recordid | cdi_ieee_primary_8671766 |
source | IEEE Electronic Library (IEL) |
subjects | Acceleration Adaptive control Automobiles Control theory cooperative adaptive cruise control Cooperative control Cruise control Delays Dynamic stability Feedforward control Heterogeneous platooning Mathematical models model predictive control Packet loss Parameters Platooning Predictive control Robustness Safety Shock waves Stability analysis string stability Traffic capacity Traffic congestion Traffic jams Vehicle dynamics Vehicles |
title | String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=String%20Stable%20Model%20Predictive%20Cooperative%20Adaptive%20Cruise%20Control%20for%20Heterogeneous%20Platoons&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=van%20Nunen,%20Ellen&rft.date=2019-06-01&rft.volume=4&rft.issue=2&rft.spage=186&rft.epage=196&rft.pages=186-196&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2019.2904418&rft_dat=%3Cproquest_RIE%3E2296108831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296108831&rft_id=info:pmid/&rft_ieee_id=8671766&rfr_iscdi=true |