String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons

Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent vehicles 2019-06, Vol.4 (2), p.186-196
Hauptverfasser: van Nunen, Ellen, Reinders, Joey, Semsar-Kazerooni, Elham, van de Wouw, Nathan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 196
container_issue 2
container_start_page 186
container_title IEEE transactions on intelligent vehicles
container_volume 4
creator van Nunen, Ellen
Reinders, Joey
Semsar-Kazerooni, Elham
van de Wouw, Nathan
description Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of the technological challenges is how to guarantee string stability (the ability to avoid amplification of dynamic vehicle responses along the string of vehicles) under nominal operational conditions. The second challenge is how to apply this solution to heterogeneous vehicles. The third challenge is how to maintain confidentiality of the vehicle parameters. Finally, the fourth challenge is to find a method which improves robustness against wireless packet loss. This paper proposes a model predictive control approach in combination with a feed-forward control design, which is based on a shared vector of predicted accelerations over a finite time horizon. This approach is shown to be applicable to a heterogeneous sequence of vehicles, while the vehicle parameters remain confidential. In previous works such an approach has shown to increase robustness against packet losses. Conditions for string stability are presented for the nominal operational conditions. Experimental results are presented and indeed demonstrate string stable behavior.
doi_str_mv 10.1109/TIV.2019.2904418
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8671766</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8671766</ieee_id><sourcerecordid>2296108831</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-d7f0c28adba1698063953254f7ae88770696d630f68a76ab395aa90aa738e9f93</originalsourceid><addsrcrecordid>eNo9kM1Lw0AQxRdRsNTeBS8Bz6mzu-1-HEtRW6hYaPUmyzaZlJSYjbsbwf--qame5s28NzPwI-SWwphS0A_b5fuYAdVjpmEyoeqCDBiXOlVde_mn1VRdk1EIBwCgQjEFekA-NtGX9T7ZRLurMHlxOVbJ2mNeZrH8xmTuXIPe_upZbpt-6NsynLw6elclhfPJAiN6t8caXRuSdWWjc3W4IVeFrQKOznVI3p4et_NFunp9Xs5nqzTjnMc0lwVkTNl8Z6nQCgTXU86mk0JaVEpKEFrkgkMhlJXC7jrbWg3WSq5QF5oPyX1_t_Huq8UQzcG1vu5eGsa0oKAUp10K-lTmXQgeC9P48tP6H0PBnDiajqM5cTRnjt3KXb9SIuJ_XAlJpRD8CPc8bng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2296108831</pqid></control><display><type>article</type><title>String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons</title><source>IEEE Electronic Library (IEL)</source><creator>van Nunen, Ellen ; Reinders, Joey ; Semsar-Kazerooni, Elham ; van de Wouw, Nathan</creator><creatorcontrib>van Nunen, Ellen ; Reinders, Joey ; Semsar-Kazerooni, Elham ; van de Wouw, Nathan</creatorcontrib><description>Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of the technological challenges is how to guarantee string stability (the ability to avoid amplification of dynamic vehicle responses along the string of vehicles) under nominal operational conditions. The second challenge is how to apply this solution to heterogeneous vehicles. The third challenge is how to maintain confidentiality of the vehicle parameters. Finally, the fourth challenge is to find a method which improves robustness against wireless packet loss. This paper proposes a model predictive control approach in combination with a feed-forward control design, which is based on a shared vector of predicted accelerations over a finite time horizon. This approach is shown to be applicable to a heterogeneous sequence of vehicles, while the vehicle parameters remain confidential. In previous works such an approach has shown to increase robustness against packet losses. Conditions for string stability are presented for the nominal operational conditions. Experimental results are presented and indeed demonstrate string stable behavior.</description><identifier>ISSN: 2379-8858</identifier><identifier>EISSN: 2379-8904</identifier><identifier>DOI: 10.1109/TIV.2019.2904418</identifier><identifier>CODEN: ITIVBL</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Acceleration ; Adaptive control ; Automobiles ; Control theory ; cooperative adaptive cruise control ; Cooperative control ; Cruise control ; Delays ; Dynamic stability ; Feedforward control ; Heterogeneous platooning ; Mathematical models ; model predictive control ; Packet loss ; Parameters ; Platooning ; Predictive control ; Robustness ; Safety ; Shock waves ; Stability analysis ; string stability ; Traffic capacity ; Traffic congestion ; Traffic jams ; Vehicle dynamics ; Vehicles</subject><ispartof>IEEE transactions on intelligent vehicles, 2019-06, Vol.4 (2), p.186-196</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-d7f0c28adba1698063953254f7ae88770696d630f68a76ab395aa90aa738e9f93</citedby><cites>FETCH-LOGICAL-c333t-d7f0c28adba1698063953254f7ae88770696d630f68a76ab395aa90aa738e9f93</cites><orcidid>0000-0002-6745-9137 ; 0000-0001-8888-2033 ; 0000-0003-0813-1489 ; 0000-0002-2339-145X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8671766$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8671766$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>van Nunen, Ellen</creatorcontrib><creatorcontrib>Reinders, Joey</creatorcontrib><creatorcontrib>Semsar-Kazerooni, Elham</creatorcontrib><creatorcontrib>van de Wouw, Nathan</creatorcontrib><title>String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons</title><title>IEEE transactions on intelligent vehicles</title><addtitle>TIV</addtitle><description>Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of the technological challenges is how to guarantee string stability (the ability to avoid amplification of dynamic vehicle responses along the string of vehicles) under nominal operational conditions. The second challenge is how to apply this solution to heterogeneous vehicles. The third challenge is how to maintain confidentiality of the vehicle parameters. Finally, the fourth challenge is to find a method which improves robustness against wireless packet loss. This paper proposes a model predictive control approach in combination with a feed-forward control design, which is based on a shared vector of predicted accelerations over a finite time horizon. This approach is shown to be applicable to a heterogeneous sequence of vehicles, while the vehicle parameters remain confidential. In previous works such an approach has shown to increase robustness against packet losses. Conditions for string stability are presented for the nominal operational conditions. Experimental results are presented and indeed demonstrate string stable behavior.</description><subject>Acceleration</subject><subject>Adaptive control</subject><subject>Automobiles</subject><subject>Control theory</subject><subject>cooperative adaptive cruise control</subject><subject>Cooperative control</subject><subject>Cruise control</subject><subject>Delays</subject><subject>Dynamic stability</subject><subject>Feedforward control</subject><subject>Heterogeneous platooning</subject><subject>Mathematical models</subject><subject>model predictive control</subject><subject>Packet loss</subject><subject>Parameters</subject><subject>Platooning</subject><subject>Predictive control</subject><subject>Robustness</subject><subject>Safety</subject><subject>Shock waves</subject><subject>Stability analysis</subject><subject>string stability</subject><subject>Traffic capacity</subject><subject>Traffic congestion</subject><subject>Traffic jams</subject><subject>Vehicle dynamics</subject><subject>Vehicles</subject><issn>2379-8858</issn><issn>2379-8904</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kM1Lw0AQxRdRsNTeBS8Bz6mzu-1-HEtRW6hYaPUmyzaZlJSYjbsbwf--qame5s28NzPwI-SWwphS0A_b5fuYAdVjpmEyoeqCDBiXOlVde_mn1VRdk1EIBwCgQjEFekA-NtGX9T7ZRLurMHlxOVbJ2mNeZrH8xmTuXIPe_upZbpt-6NsynLw6elclhfPJAiN6t8caXRuSdWWjc3W4IVeFrQKOznVI3p4et_NFunp9Xs5nqzTjnMc0lwVkTNl8Z6nQCgTXU86mk0JaVEpKEFrkgkMhlJXC7jrbWg3WSq5QF5oPyX1_t_Huq8UQzcG1vu5eGsa0oKAUp10K-lTmXQgeC9P48tP6H0PBnDiajqM5cTRnjt3KXb9SIuJ_XAlJpRD8CPc8bng</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>van Nunen, Ellen</creator><creator>Reinders, Joey</creator><creator>Semsar-Kazerooni, Elham</creator><creator>van de Wouw, Nathan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-6745-9137</orcidid><orcidid>https://orcid.org/0000-0001-8888-2033</orcidid><orcidid>https://orcid.org/0000-0003-0813-1489</orcidid><orcidid>https://orcid.org/0000-0002-2339-145X</orcidid></search><sort><creationdate>20190601</creationdate><title>String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons</title><author>van Nunen, Ellen ; Reinders, Joey ; Semsar-Kazerooni, Elham ; van de Wouw, Nathan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-d7f0c28adba1698063953254f7ae88770696d630f68a76ab395aa90aa738e9f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Acceleration</topic><topic>Adaptive control</topic><topic>Automobiles</topic><topic>Control theory</topic><topic>cooperative adaptive cruise control</topic><topic>Cooperative control</topic><topic>Cruise control</topic><topic>Delays</topic><topic>Dynamic stability</topic><topic>Feedforward control</topic><topic>Heterogeneous platooning</topic><topic>Mathematical models</topic><topic>model predictive control</topic><topic>Packet loss</topic><topic>Parameters</topic><topic>Platooning</topic><topic>Predictive control</topic><topic>Robustness</topic><topic>Safety</topic><topic>Shock waves</topic><topic>Stability analysis</topic><topic>string stability</topic><topic>Traffic capacity</topic><topic>Traffic congestion</topic><topic>Traffic jams</topic><topic>Vehicle dynamics</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>van Nunen, Ellen</creatorcontrib><creatorcontrib>Reinders, Joey</creatorcontrib><creatorcontrib>Semsar-Kazerooni, Elham</creatorcontrib><creatorcontrib>van de Wouw, Nathan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on intelligent vehicles</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>van Nunen, Ellen</au><au>Reinders, Joey</au><au>Semsar-Kazerooni, Elham</au><au>van de Wouw, Nathan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons</atitle><jtitle>IEEE transactions on intelligent vehicles</jtitle><stitle>TIV</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>186</spage><epage>196</epage><pages>186-196</pages><issn>2379-8858</issn><eissn>2379-8904</eissn><coden>ITIVBL</coden><abstract>Cooperative adaptive cruise control (CACC) is a potential solution to decrease traffic jams caused by shock waves, increase the road capacity, decrease fuel consumption and improve safety. This paper proposes an integrated solution to a combination of four challenges in these CACC systems. One of the technological challenges is how to guarantee string stability (the ability to avoid amplification of dynamic vehicle responses along the string of vehicles) under nominal operational conditions. The second challenge is how to apply this solution to heterogeneous vehicles. The third challenge is how to maintain confidentiality of the vehicle parameters. Finally, the fourth challenge is to find a method which improves robustness against wireless packet loss. This paper proposes a model predictive control approach in combination with a feed-forward control design, which is based on a shared vector of predicted accelerations over a finite time horizon. This approach is shown to be applicable to a heterogeneous sequence of vehicles, while the vehicle parameters remain confidential. In previous works such an approach has shown to increase robustness against packet losses. Conditions for string stability are presented for the nominal operational conditions. Experimental results are presented and indeed demonstrate string stable behavior.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TIV.2019.2904418</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-6745-9137</orcidid><orcidid>https://orcid.org/0000-0001-8888-2033</orcidid><orcidid>https://orcid.org/0000-0003-0813-1489</orcidid><orcidid>https://orcid.org/0000-0002-2339-145X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2379-8858
ispartof IEEE transactions on intelligent vehicles, 2019-06, Vol.4 (2), p.186-196
issn 2379-8858
2379-8904
language eng
recordid cdi_ieee_primary_8671766
source IEEE Electronic Library (IEL)
subjects Acceleration
Adaptive control
Automobiles
Control theory
cooperative adaptive cruise control
Cooperative control
Cruise control
Delays
Dynamic stability
Feedforward control
Heterogeneous platooning
Mathematical models
model predictive control
Packet loss
Parameters
Platooning
Predictive control
Robustness
Safety
Shock waves
Stability analysis
string stability
Traffic capacity
Traffic congestion
Traffic jams
Vehicle dynamics
Vehicles
title String Stable Model Predictive Cooperative Adaptive Cruise Control for Heterogeneous Platoons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T14%3A16%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=String%20Stable%20Model%20Predictive%20Cooperative%20Adaptive%20Cruise%20Control%20for%20Heterogeneous%20Platoons&rft.jtitle=IEEE%20transactions%20on%20intelligent%20vehicles&rft.au=van%20Nunen,%20Ellen&rft.date=2019-06-01&rft.volume=4&rft.issue=2&rft.spage=186&rft.epage=196&rft.pages=186-196&rft.issn=2379-8858&rft.eissn=2379-8904&rft.coden=ITIVBL&rft_id=info:doi/10.1109/TIV.2019.2904418&rft_dat=%3Cproquest_RIE%3E2296108831%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2296108831&rft_id=info:pmid/&rft_ieee_id=8671766&rfr_iscdi=true