Three-phase power flow calculations using the current injection method

This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems 2000-05, Vol.15 (2), p.508-514
Hauptverfasser: Garcia, P.A.N., Pereira, J.L.R., Carneiro, S., da Costa, V.M., Martins, N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 514
container_issue 2
container_start_page 508
container_title IEEE transactions on power systems
container_volume 15
creator Garcia, P.A.N.
Pereira, J.L.R.
Carneiro, S.
da Costa, V.M.
Martins, N.
description This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6/spl times/6 block matrices and retains the same structure as the nodal admittance matrix. Practical distribution systems were used to test the method and to compare its robustness with that of the backward/forward sweep method.
doi_str_mv 10.1109/59.867133
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_867133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>867133</ieee_id><sourcerecordid>2434073391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-31172ca61bcc7c65e3b4c05ecb8128dd0577766c4cbc3a19b9af3621a4fd38bf3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQpDKxMFgOIIcWO468RVRSQKrGUOXKcC0mVxsFOhPj3uErFwADTDe-jO90dQpeULCgl-p7rhRKSMnaEZpRzlRAh9TGaEaV4ojQnp-gshC0hRMRghlab2gMkfW0C4N59gsdV6z6xNa0dWzM0rgt4DE33jocasB29h27ATbcFuw_xDobalefopDJtgItDnaO31eNm-ZysX59elg_rxDIhh4RRKlNrBC2slVZwYEVmCQdbKJqqsiRcSimEzWxhmaG60KZiIqUmq0qmiorN0e3Ut_fuY4Qw5LsmWGhb04EbQ66UilcgOovy5k-ZKqFFpsT_MM00p0pGeP0Lbt3ou7huHMsJJSljEd1NyHoXgocq732zM_4rpyTffyjnOp8-FO3VZBsA-HGH8Bt734qu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885010233</pqid></control><display><type>article</type><title>Three-phase power flow calculations using the current injection method</title><source>IEEE Electronic Library (IEL)</source><creator>Garcia, P.A.N. ; Pereira, J.L.R. ; Carneiro, S. ; da Costa, V.M. ; Martins, N.</creator><creatorcontrib>Garcia, P.A.N. ; Pereira, J.L.R. ; Carneiro, S. ; da Costa, V.M. ; Martins, N.</creatorcontrib><description>This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6/spl times/6 block matrices and retains the same structure as the nodal admittance matrix. Practical distribution systems were used to test the method and to compare its robustness with that of the backward/forward sweep method.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.867133</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Admittance ; Blocking ; Current injection ; Equations ; Jacobian matrices ; Jacobian matrix ; Large-scale systems ; Load flow ; Load modeling ; Mathematical analysis ; Matrices ; Newton-Raphson method ; Power flow ; Power systems ; Robustness ; Sparse matrices ; System testing ; Voltage</subject><ispartof>IEEE transactions on power systems, 2000-05, Vol.15 (2), p.508-514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-31172ca61bcc7c65e3b4c05ecb8128dd0577766c4cbc3a19b9af3621a4fd38bf3</citedby><cites>FETCH-LOGICAL-c367t-31172ca61bcc7c65e3b4c05ecb8128dd0577766c4cbc3a19b9af3621a4fd38bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/867133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/867133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia, P.A.N.</creatorcontrib><creatorcontrib>Pereira, J.L.R.</creatorcontrib><creatorcontrib>Carneiro, S.</creatorcontrib><creatorcontrib>da Costa, V.M.</creatorcontrib><creatorcontrib>Martins, N.</creatorcontrib><title>Three-phase power flow calculations using the current injection method</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6/spl times/6 block matrices and retains the same structure as the nodal admittance matrix. Practical distribution systems were used to test the method and to compare its robustness with that of the backward/forward sweep method.</description><subject>Admittance</subject><subject>Blocking</subject><subject>Current injection</subject><subject>Equations</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Large-scale systems</subject><subject>Load flow</subject><subject>Load modeling</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Newton-Raphson method</subject><subject>Power flow</subject><subject>Power systems</subject><subject>Robustness</subject><subject>Sparse matrices</subject><subject>System testing</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1PwzAQBmALgUQpDKxMFgOIIcWO468RVRSQKrGUOXKcC0mVxsFOhPj3uErFwADTDe-jO90dQpeULCgl-p7rhRKSMnaEZpRzlRAh9TGaEaV4ojQnp-gshC0hRMRghlab2gMkfW0C4N59gsdV6z6xNa0dWzM0rgt4DE33jocasB29h27ATbcFuw_xDobalefopDJtgItDnaO31eNm-ZysX59elg_rxDIhh4RRKlNrBC2slVZwYEVmCQdbKJqqsiRcSimEzWxhmaG60KZiIqUmq0qmiorN0e3Ut_fuY4Qw5LsmWGhb04EbQ66UilcgOovy5k-ZKqFFpsT_MM00p0pGeP0Lbt3ou7huHMsJJSljEd1NyHoXgocq732zM_4rpyTffyjnOp8-FO3VZBsA-HGH8Bt734qu</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Garcia, P.A.N.</creator><creator>Pereira, J.L.R.</creator><creator>Carneiro, S.</creator><creator>da Costa, V.M.</creator><creator>Martins, N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20000501</creationdate><title>Three-phase power flow calculations using the current injection method</title><author>Garcia, P.A.N. ; Pereira, J.L.R. ; Carneiro, S. ; da Costa, V.M. ; Martins, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-31172ca61bcc7c65e3b4c05ecb8128dd0577766c4cbc3a19b9af3621a4fd38bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Admittance</topic><topic>Blocking</topic><topic>Current injection</topic><topic>Equations</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Large-scale systems</topic><topic>Load flow</topic><topic>Load modeling</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Newton-Raphson method</topic><topic>Power flow</topic><topic>Power systems</topic><topic>Robustness</topic><topic>Sparse matrices</topic><topic>System testing</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, P.A.N.</creatorcontrib><creatorcontrib>Pereira, J.L.R.</creatorcontrib><creatorcontrib>Carneiro, S.</creatorcontrib><creatorcontrib>da Costa, V.M.</creatorcontrib><creatorcontrib>Martins, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia, P.A.N.</au><au>Pereira, J.L.R.</au><au>Carneiro, S.</au><au>da Costa, V.M.</au><au>Martins, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-phase power flow calculations using the current injection method</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2000-05-01</date><risdate>2000</risdate><volume>15</volume><issue>2</issue><spage>508</spage><epage>514</epage><pages>508-514</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6/spl times/6 block matrices and retains the same structure as the nodal admittance matrix. Practical distribution systems were used to test the method and to compare its robustness with that of the backward/forward sweep method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/59.867133</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2000-05, Vol.15 (2), p.508-514
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_867133
source IEEE Electronic Library (IEL)
subjects Admittance
Blocking
Current injection
Equations
Jacobian matrices
Jacobian matrix
Large-scale systems
Load flow
Load modeling
Mathematical analysis
Matrices
Newton-Raphson method
Power flow
Power systems
Robustness
Sparse matrices
System testing
Voltage
title Three-phase power flow calculations using the current injection method
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-phase%20power%20flow%20calculations%20using%20the%20current%20injection%20method&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Garcia,%20P.A.N.&rft.date=2000-05-01&rft.volume=15&rft.issue=2&rft.spage=508&rft.epage=514&rft.pages=508-514&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.867133&rft_dat=%3Cproquest_RIE%3E2434073391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885010233&rft_id=info:pmid/&rft_ieee_id=867133&rfr_iscdi=true