Three-phase power flow calculations using the current injection method
This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on power systems 2000-05, Vol.15 (2), p.508-514 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 514 |
---|---|
container_issue | 2 |
container_start_page | 508 |
container_title | IEEE transactions on power systems |
container_volume | 15 |
creator | Garcia, P.A.N. Pereira, J.L.R. Carneiro, S. da Costa, V.M. Martins, N. |
description | This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6/spl times/6 block matrices and retains the same structure as the nodal admittance matrix. Practical distribution systems were used to test the method and to compare its robustness with that of the backward/forward sweep method. |
doi_str_mv | 10.1109/59.867133 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_867133</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>867133</ieee_id><sourcerecordid>2434073391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c367t-31172ca61bcc7c65e3b4c05ecb8128dd0577766c4cbc3a19b9af3621a4fd38bf3</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgUQpDKxMFgOIIcWO468RVRSQKrGUOXKcC0mVxsFOhPj3uErFwADTDe-jO90dQpeULCgl-p7rhRKSMnaEZpRzlRAh9TGaEaV4ojQnp-gshC0hRMRghlab2gMkfW0C4N59gsdV6z6xNa0dWzM0rgt4DE33jocasB29h27ATbcFuw_xDobalefopDJtgItDnaO31eNm-ZysX59elg_rxDIhh4RRKlNrBC2slVZwYEVmCQdbKJqqsiRcSimEzWxhmaG60KZiIqUmq0qmiorN0e3Ut_fuY4Qw5LsmWGhb04EbQ66UilcgOovy5k-ZKqFFpsT_MM00p0pGeP0Lbt3ou7huHMsJJSljEd1NyHoXgocq732zM_4rpyTffyjnOp8-FO3VZBsA-HGH8Bt734qu</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>885010233</pqid></control><display><type>article</type><title>Three-phase power flow calculations using the current injection method</title><source>IEEE Electronic Library (IEL)</source><creator>Garcia, P.A.N. ; Pereira, J.L.R. ; Carneiro, S. ; da Costa, V.M. ; Martins, N.</creator><creatorcontrib>Garcia, P.A.N. ; Pereira, J.L.R. ; Carneiro, S. ; da Costa, V.M. ; Martins, N.</creatorcontrib><description>This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6/spl times/6 block matrices and retains the same structure as the nodal admittance matrix. Practical distribution systems were used to test the method and to compare its robustness with that of the backward/forward sweep method.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/59.867133</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Admittance ; Blocking ; Current injection ; Equations ; Jacobian matrices ; Jacobian matrix ; Large-scale systems ; Load flow ; Load modeling ; Mathematical analysis ; Matrices ; Newton-Raphson method ; Power flow ; Power systems ; Robustness ; Sparse matrices ; System testing ; Voltage</subject><ispartof>IEEE transactions on power systems, 2000-05, Vol.15 (2), p.508-514</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2000</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c367t-31172ca61bcc7c65e3b4c05ecb8128dd0577766c4cbc3a19b9af3621a4fd38bf3</citedby><cites>FETCH-LOGICAL-c367t-31172ca61bcc7c65e3b4c05ecb8128dd0577766c4cbc3a19b9af3621a4fd38bf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/867133$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/867133$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Garcia, P.A.N.</creatorcontrib><creatorcontrib>Pereira, J.L.R.</creatorcontrib><creatorcontrib>Carneiro, S.</creatorcontrib><creatorcontrib>da Costa, V.M.</creatorcontrib><creatorcontrib>Martins, N.</creatorcontrib><title>Three-phase power flow calculations using the current injection method</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6/spl times/6 block matrices and retains the same structure as the nodal admittance matrix. Practical distribution systems were used to test the method and to compare its robustness with that of the backward/forward sweep method.</description><subject>Admittance</subject><subject>Blocking</subject><subject>Current injection</subject><subject>Equations</subject><subject>Jacobian matrices</subject><subject>Jacobian matrix</subject><subject>Large-scale systems</subject><subject>Load flow</subject><subject>Load modeling</subject><subject>Mathematical analysis</subject><subject>Matrices</subject><subject>Newton-Raphson method</subject><subject>Power flow</subject><subject>Power systems</subject><subject>Robustness</subject><subject>Sparse matrices</subject><subject>System testing</subject><subject>Voltage</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqF0T1PwzAQBmALgUQpDKxMFgOIIcWO468RVRSQKrGUOXKcC0mVxsFOhPj3uErFwADTDe-jO90dQpeULCgl-p7rhRKSMnaEZpRzlRAh9TGaEaV4ojQnp-gshC0hRMRghlab2gMkfW0C4N59gsdV6z6xNa0dWzM0rgt4DE33jocasB29h27ATbcFuw_xDobalefopDJtgItDnaO31eNm-ZysX59elg_rxDIhh4RRKlNrBC2slVZwYEVmCQdbKJqqsiRcSimEzWxhmaG60KZiIqUmq0qmiorN0e3Ut_fuY4Qw5LsmWGhb04EbQ66UilcgOovy5k-ZKqFFpsT_MM00p0pGeP0Lbt3ou7huHMsJJSljEd1NyHoXgocq732zM_4rpyTffyjnOp8-FO3VZBsA-HGH8Bt734qu</recordid><startdate>20000501</startdate><enddate>20000501</enddate><creator>Garcia, P.A.N.</creator><creator>Pereira, J.L.R.</creator><creator>Carneiro, S.</creator><creator>da Costa, V.M.</creator><creator>Martins, N.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20000501</creationdate><title>Three-phase power flow calculations using the current injection method</title><author>Garcia, P.A.N. ; Pereira, J.L.R. ; Carneiro, S. ; da Costa, V.M. ; Martins, N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c367t-31172ca61bcc7c65e3b4c05ecb8128dd0577766c4cbc3a19b9af3621a4fd38bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Admittance</topic><topic>Blocking</topic><topic>Current injection</topic><topic>Equations</topic><topic>Jacobian matrices</topic><topic>Jacobian matrix</topic><topic>Large-scale systems</topic><topic>Load flow</topic><topic>Load modeling</topic><topic>Mathematical analysis</topic><topic>Matrices</topic><topic>Newton-Raphson method</topic><topic>Power flow</topic><topic>Power systems</topic><topic>Robustness</topic><topic>Sparse matrices</topic><topic>System testing</topic><topic>Voltage</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garcia, P.A.N.</creatorcontrib><creatorcontrib>Pereira, J.L.R.</creatorcontrib><creatorcontrib>Carneiro, S.</creatorcontrib><creatorcontrib>da Costa, V.M.</creatorcontrib><creatorcontrib>Martins, N.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Garcia, P.A.N.</au><au>Pereira, J.L.R.</au><au>Carneiro, S.</au><au>da Costa, V.M.</au><au>Martins, N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Three-phase power flow calculations using the current injection method</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2000-05-01</date><risdate>2000</risdate><volume>15</volume><issue>2</issue><spage>508</spage><epage>514</epage><pages>508-514</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a new sparse formulation for the solution of unbalanced three-phase power systems using the Newton-Raphson method. The three-phase current injection equations are written in rectangular coordinates resulting in an order 6n system of equations. The Jacobian matrix is composed of 6/spl times/6 block matrices and retains the same structure as the nodal admittance matrix. Practical distribution systems were used to test the method and to compare its robustness with that of the backward/forward sweep method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/59.867133</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0885-8950 |
ispartof | IEEE transactions on power systems, 2000-05, Vol.15 (2), p.508-514 |
issn | 0885-8950 1558-0679 |
language | eng |
recordid | cdi_ieee_primary_867133 |
source | IEEE Electronic Library (IEL) |
subjects | Admittance Blocking Current injection Equations Jacobian matrices Jacobian matrix Large-scale systems Load flow Load modeling Mathematical analysis Matrices Newton-Raphson method Power flow Power systems Robustness Sparse matrices System testing Voltage |
title | Three-phase power flow calculations using the current injection method |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T13%3A00%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Three-phase%20power%20flow%20calculations%20using%20the%20current%20injection%20method&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Garcia,%20P.A.N.&rft.date=2000-05-01&rft.volume=15&rft.issue=2&rft.spage=508&rft.epage=514&rft.pages=508-514&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/59.867133&rft_dat=%3Cproquest_RIE%3E2434073391%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=885010233&rft_id=info:pmid/&rft_ieee_id=867133&rfr_iscdi=true |