DeepVID: Deep Visual Interpretation and Diagnosis for Image Classifiers via Knowledge Distillation

Deep Neural Networks (DNNs) have been extensively used in multiple disciplines due to their superior performance. However, in most cases, DNNs are considered as black-boxes and the interpretation of their internal working mechanism is usually challenging. Given that model trust is often built on the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics 2019-06, Vol.25 (6), p.2168-2180
Hauptverfasser: Wang, Junpeng, Gou, Liang, Zhang, Wei, Yang, Hao, Shen, Han-Wei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Deep Neural Networks (DNNs) have been extensively used in multiple disciplines due to their superior performance. However, in most cases, DNNs are considered as black-boxes and the interpretation of their internal working mechanism is usually challenging. Given that model trust is often built on the understanding of how a model works, the interpretation of DNNs becomes more important, especially in safety-critical applications (e.g., medical diagnosis, autonomous driving). In this paper, we propose DeepVID, a Deep learning approach to Visually Interpret and Diagnose DNN models, especially image classifiers. In detail, we train a small locally-faithful model to mimic the behavior of an original cumbersome DNN around a particular data instance of interest, and the local model is sufficiently simple such that it can be visually interpreted (e.g., a linear model). Knowledge distillation is used to transfer the knowledge from the cumbersome DNN to the small model, and a deep generative model (i.e., variational auto-encoder) is used to generate neighbors around the instance of interest. Those neighbors, which come with small feature variances and semantic meanings, can effectively probe the DNN's behaviors around the interested instance and help the small model to learn those behaviors. Through comprehensive evaluations, as well as case studies conducted together with deep learning experts, we validate the effectiveness of DeepVID.
ISSN:1077-2626
1941-0506
DOI:10.1109/TVCG.2019.2903943