Fabrication of Nanostructured Skutterudite-Based Thermoelectric Module and Design of a Maximum Power Point Tracking System for the Thermoelectric Pile
In a bid to realize the applications of skutterudite-based thermoelectric modules and maximally utilize the output power of its thermoelectric pile, first, nanocomposite n-type skutterudite-based material was prepared by adding the nano phase AgSbTe 2 , giving rise to a dimensionless figure-of-merit...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2019-07, Vol.19 (14), p.5885-5894 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5894 |
---|---|
container_issue | 14 |
container_start_page | 5885 |
container_title | IEEE sensors journal |
container_volume | 19 |
creator | Cheng, Fuqiang Gao, Yu Guo, Xiaohong Yuan, Xian Fu, Liangwei Shi, Lin Han, Xing Zheng, Kun Wang, Chao Zhang, Weitao |
description | In a bid to realize the applications of skutterudite-based thermoelectric modules and maximally utilize the output power of its thermoelectric pile, first, nanocomposite n-type skutterudite-based material was prepared by adding the nano phase AgSbTe 2 , giving rise to a dimensionless figure-of-merit of 0.91. Then, skutterudite-based modules were fabricated and tested, which showed high area-ratio power of nearly 0.244W · cm −2 . At last, in order to obtain the maximum output power for the skutterudite-based thermoelectric pile and improve the energy efficiency, a power management system based on maximum power point tracking (MPPT) technology was designed and tested. The perturbation observation method was adopted for the MPPT. Test results showed that the maximum efficiency of the system was over 98%. Meantime, when the open-circuit voltage of the thermoelectric pile was over 21.2 V, the system operating efficiency was larger than 90%. |
doi_str_mv | 10.1109/JSEN.2019.2905150 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8667307</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8667307</ieee_id><sourcerecordid>2244351273</sourcerecordid><originalsourceid>FETCH-LOGICAL-c341t-8fce3182f4ac7e87b1e245c5caa714201acfdc4f5bbc08ea2ca7b7c5c96d6453</originalsourceid><addsrcrecordid>eNpdkM9OAjEQxjdGExF9AOOliefFdtvS5agI_gkgCRy8bbrdWSiwW2y7UV7E57UI8eBlZjLzfd8kvyi6JrhDCO7dvc4Gk06CSa-T9DAnHJ9ELcJ5GhPB0tP9THHMqHg_jy6cW-GgFFy0ou-hzK1W0mtTI1OiiayN87ZRvrFQoNm68R5sU2gP8YN0YTVfgq0MbED5YERjUzQbQLIu0CM4vfhNkWgsv3TVVGhqPsGGqmuP5laqta4XaLZzHipUGov8Ev4nTvUGLqOzUm4cXB17O5oPB_P-czx6e3rp349iRRnxcVoqoCRNSiaVgFTkBBLGFVdSCsICDqnKQrGS57nCKchESZGLcO91iy7jtB3dHmK31nw04Hy2Mo2tw8csSRijnCSCBhU5qJQ1zlkos63VlbS7jOBsTz_b08_29LMj_eC5OXg0APzp025XUCzoD9z2hJ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2244351273</pqid></control><display><type>article</type><title>Fabrication of Nanostructured Skutterudite-Based Thermoelectric Module and Design of a Maximum Power Point Tracking System for the Thermoelectric Pile</title><source>IEEE Electronic Library (IEL)</source><creator>Cheng, Fuqiang ; Gao, Yu ; Guo, Xiaohong ; Yuan, Xian ; Fu, Liangwei ; Shi, Lin ; Han, Xing ; Zheng, Kun ; Wang, Chao ; Zhang, Weitao</creator><creatorcontrib>Cheng, Fuqiang ; Gao, Yu ; Guo, Xiaohong ; Yuan, Xian ; Fu, Liangwei ; Shi, Lin ; Han, Xing ; Zheng, Kun ; Wang, Chao ; Zhang, Weitao</creatorcontrib><description>In a bid to realize the applications of skutterudite-based thermoelectric modules and maximally utilize the output power of its thermoelectric pile, first, nanocomposite n-type skutterudite-based material was prepared by adding the nano phase AgSbTe 2 , giving rise to a dimensionless figure-of-merit of 0.91. Then, skutterudite-based modules were fabricated and tested, which showed high area-ratio power of nearly 0.244W · cm −2 . At last, in order to obtain the maximum output power for the skutterudite-based thermoelectric pile and improve the energy efficiency, a power management system based on maximum power point tracking (MPPT) technology was designed and tested. The perturbation observation method was adopted for the MPPT. Test results showed that the maximum efficiency of the system was over 98%. Meantime, when the open-circuit voltage of the thermoelectric pile was over 21.2 V, the system operating efficiency was larger than 90%.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2905150</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Conductivity ; Efficiency ; Energy management ; Maximum power point trackers ; maximum power point tracking ; Maximum power tracking ; Modules ; nano-machined skutterudite ; Nanocomposites ; Nanostructured materials ; Open circuit voltage ; Perturbation ; perturbation observation method ; Power efficiency ; Power management ; Sensors ; Silver antimony telluride ; Temperature ; Thermal conductivity ; Thermoelectric generator ; Thermoelectric materials ; thermoelectric module ; Thermoelectricity ; Tracking systems</subject><ispartof>IEEE sensors journal, 2019-07, Vol.19 (14), p.5885-5894</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c341t-8fce3182f4ac7e87b1e245c5caa714201acfdc4f5bbc08ea2ca7b7c5c96d6453</citedby><cites>FETCH-LOGICAL-c341t-8fce3182f4ac7e87b1e245c5caa714201acfdc4f5bbc08ea2ca7b7c5c96d6453</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8667307$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8667307$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cheng, Fuqiang</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Guo, Xiaohong</creatorcontrib><creatorcontrib>Yuan, Xian</creatorcontrib><creatorcontrib>Fu, Liangwei</creatorcontrib><creatorcontrib>Shi, Lin</creatorcontrib><creatorcontrib>Han, Xing</creatorcontrib><creatorcontrib>Zheng, Kun</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Zhang, Weitao</creatorcontrib><title>Fabrication of Nanostructured Skutterudite-Based Thermoelectric Module and Design of a Maximum Power Point Tracking System for the Thermoelectric Pile</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>In a bid to realize the applications of skutterudite-based thermoelectric modules and maximally utilize the output power of its thermoelectric pile, first, nanocomposite n-type skutterudite-based material was prepared by adding the nano phase AgSbTe 2 , giving rise to a dimensionless figure-of-merit of 0.91. Then, skutterudite-based modules were fabricated and tested, which showed high area-ratio power of nearly 0.244W · cm −2 . At last, in order to obtain the maximum output power for the skutterudite-based thermoelectric pile and improve the energy efficiency, a power management system based on maximum power point tracking (MPPT) technology was designed and tested. The perturbation observation method was adopted for the MPPT. Test results showed that the maximum efficiency of the system was over 98%. Meantime, when the open-circuit voltage of the thermoelectric pile was over 21.2 V, the system operating efficiency was larger than 90%.</description><subject>Conductivity</subject><subject>Efficiency</subject><subject>Energy management</subject><subject>Maximum power point trackers</subject><subject>maximum power point tracking</subject><subject>Maximum power tracking</subject><subject>Modules</subject><subject>nano-machined skutterudite</subject><subject>Nanocomposites</subject><subject>Nanostructured materials</subject><subject>Open circuit voltage</subject><subject>Perturbation</subject><subject>perturbation observation method</subject><subject>Power efficiency</subject><subject>Power management</subject><subject>Sensors</subject><subject>Silver antimony telluride</subject><subject>Temperature</subject><subject>Thermal conductivity</subject><subject>Thermoelectric generator</subject><subject>Thermoelectric materials</subject><subject>thermoelectric module</subject><subject>Thermoelectricity</subject><subject>Tracking systems</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkM9OAjEQxjdGExF9AOOliefFdtvS5agI_gkgCRy8bbrdWSiwW2y7UV7E57UI8eBlZjLzfd8kvyi6JrhDCO7dvc4Gk06CSa-T9DAnHJ9ELcJ5GhPB0tP9THHMqHg_jy6cW-GgFFy0ou-hzK1W0mtTI1OiiayN87ZRvrFQoNm68R5sU2gP8YN0YTVfgq0MbED5YERjUzQbQLIu0CM4vfhNkWgsv3TVVGhqPsGGqmuP5laqta4XaLZzHipUGov8Ev4nTvUGLqOzUm4cXB17O5oPB_P-czx6e3rp349iRRnxcVoqoCRNSiaVgFTkBBLGFVdSCsICDqnKQrGS57nCKchESZGLcO91iy7jtB3dHmK31nw04Hy2Mo2tw8csSRijnCSCBhU5qJQ1zlkos63VlbS7jOBsTz_b08_29LMj_eC5OXg0APzp025XUCzoD9z2hJ4</recordid><startdate>20190715</startdate><enddate>20190715</enddate><creator>Cheng, Fuqiang</creator><creator>Gao, Yu</creator><creator>Guo, Xiaohong</creator><creator>Yuan, Xian</creator><creator>Fu, Liangwei</creator><creator>Shi, Lin</creator><creator>Han, Xing</creator><creator>Zheng, Kun</creator><creator>Wang, Chao</creator><creator>Zhang, Weitao</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope></search><sort><creationdate>20190715</creationdate><title>Fabrication of Nanostructured Skutterudite-Based Thermoelectric Module and Design of a Maximum Power Point Tracking System for the Thermoelectric Pile</title><author>Cheng, Fuqiang ; Gao, Yu ; Guo, Xiaohong ; Yuan, Xian ; Fu, Liangwei ; Shi, Lin ; Han, Xing ; Zheng, Kun ; Wang, Chao ; Zhang, Weitao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c341t-8fce3182f4ac7e87b1e245c5caa714201acfdc4f5bbc08ea2ca7b7c5c96d6453</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Conductivity</topic><topic>Efficiency</topic><topic>Energy management</topic><topic>Maximum power point trackers</topic><topic>maximum power point tracking</topic><topic>Maximum power tracking</topic><topic>Modules</topic><topic>nano-machined skutterudite</topic><topic>Nanocomposites</topic><topic>Nanostructured materials</topic><topic>Open circuit voltage</topic><topic>Perturbation</topic><topic>perturbation observation method</topic><topic>Power efficiency</topic><topic>Power management</topic><topic>Sensors</topic><topic>Silver antimony telluride</topic><topic>Temperature</topic><topic>Thermal conductivity</topic><topic>Thermoelectric generator</topic><topic>Thermoelectric materials</topic><topic>thermoelectric module</topic><topic>Thermoelectricity</topic><topic>Tracking systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cheng, Fuqiang</creatorcontrib><creatorcontrib>Gao, Yu</creatorcontrib><creatorcontrib>Guo, Xiaohong</creatorcontrib><creatorcontrib>Yuan, Xian</creatorcontrib><creatorcontrib>Fu, Liangwei</creatorcontrib><creatorcontrib>Shi, Lin</creatorcontrib><creatorcontrib>Han, Xing</creatorcontrib><creatorcontrib>Zheng, Kun</creatorcontrib><creatorcontrib>Wang, Chao</creatorcontrib><creatorcontrib>Zhang, Weitao</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cheng, Fuqiang</au><au>Gao, Yu</au><au>Guo, Xiaohong</au><au>Yuan, Xian</au><au>Fu, Liangwei</au><au>Shi, Lin</au><au>Han, Xing</au><au>Zheng, Kun</au><au>Wang, Chao</au><au>Zhang, Weitao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fabrication of Nanostructured Skutterudite-Based Thermoelectric Module and Design of a Maximum Power Point Tracking System for the Thermoelectric Pile</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-07-15</date><risdate>2019</risdate><volume>19</volume><issue>14</issue><spage>5885</spage><epage>5894</epage><pages>5885-5894</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>In a bid to realize the applications of skutterudite-based thermoelectric modules and maximally utilize the output power of its thermoelectric pile, first, nanocomposite n-type skutterudite-based material was prepared by adding the nano phase AgSbTe 2 , giving rise to a dimensionless figure-of-merit of 0.91. Then, skutterudite-based modules were fabricated and tested, which showed high area-ratio power of nearly 0.244W · cm −2 . At last, in order to obtain the maximum output power for the skutterudite-based thermoelectric pile and improve the energy efficiency, a power management system based on maximum power point tracking (MPPT) technology was designed and tested. The perturbation observation method was adopted for the MPPT. Test results showed that the maximum efficiency of the system was over 98%. Meantime, when the open-circuit voltage of the thermoelectric pile was over 21.2 V, the system operating efficiency was larger than 90%.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2905150</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2019-07, Vol.19 (14), p.5885-5894 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_8667307 |
source | IEEE Electronic Library (IEL) |
subjects | Conductivity Efficiency Energy management Maximum power point trackers maximum power point tracking Maximum power tracking Modules nano-machined skutterudite Nanocomposites Nanostructured materials Open circuit voltage Perturbation perturbation observation method Power efficiency Power management Sensors Silver antimony telluride Temperature Thermal conductivity Thermoelectric generator Thermoelectric materials thermoelectric module Thermoelectricity Tracking systems |
title | Fabrication of Nanostructured Skutterudite-Based Thermoelectric Module and Design of a Maximum Power Point Tracking System for the Thermoelectric Pile |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T00%3A32%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fabrication%20of%20Nanostructured%20Skutterudite-Based%20Thermoelectric%20Module%20and%20Design%20of%20a%20Maximum%20Power%20Point%20Tracking%20System%20for%20the%20Thermoelectric%20Pile&rft.jtitle=IEEE%20sensors%20journal&rft.au=Cheng,%20Fuqiang&rft.date=2019-07-15&rft.volume=19&rft.issue=14&rft.spage=5885&rft.epage=5894&rft.pages=5885-5894&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2905150&rft_dat=%3Cproquest_RIE%3E2244351273%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2244351273&rft_id=info:pmid/&rft_ieee_id=8667307&rfr_iscdi=true |