Information-Theoretic Pilot Design for Downlink Channel Estimation in FDD Massive MIMO Systems

Massive multiple-input multiple-output (MIMO) is one of the most promising techniques for next generation wireless communications due to its superior capability to provide high spectrum and energy efficiency. Considering the very large number of antennas employed at the base station, however, the pi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on signal processing 2019-05, Vol.67 (9), p.2334-2346
Hauptverfasser: Yujie Gu, Zhang, Yimin D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2346
container_issue 9
container_start_page 2334
container_title IEEE transactions on signal processing
container_volume 67
creator Yujie Gu
Zhang, Yimin D.
description Massive multiple-input multiple-output (MIMO) is one of the most promising techniques for next generation wireless communications due to its superior capability to provide high spectrum and energy efficiency. Considering the very large number of antennas employed at the base station, however, the pilot overhead for downlink channel estimation becomes unaffordable in frequency division duplex (FDD) multiuser massive MIMO systems. In this paper, we propose an information-theoretic metric to design the pilot for downlink channel estimation in FDD multiuser massive MIMO systems. By exploiting the low-rank nature of the channel covariance matrix, we first derive the minimum number of pilot symbols required to ensure perfect channel recovery, which is much less than the number of antennas at the base station. Further, under a general channel model that the channel vector of each user follows a Gaussian mixture distribution, the pilot symbols are designed by maximizing the weighted sum of the Shannon mutual information between the measurements of the users and their corresponding channel vectors on the complex Grassmannian manifold. Simulation results demonstrate the effectiveness of the proposed information-theoretic pilot design for the downlink channel estimation in FDD massive MIMO systems.
doi_str_mv 10.1109/TSP.2019.2904018
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8663356</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8663356</ieee_id><sourcerecordid>2202891734</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-5d147a0df141b29e0a12bc3916e899a737450775aaa0ccebb2a3b6c0c6e3123</originalsourceid><addsrcrecordid>eNo9kD1PwzAQhiMEEqWwI7FYYk65sx0nHlE_oFKrVmoHJiwndahLapc4BfXfkyqI6W543vd0TxTdIwwQQT6tV8sBBZQDKoEDZhdRDyXHGHgqLtsdEhYnWfp2Hd2EsANAzqXoRe9TV_p6rxvrXbzeGl-bxhZkaSvfkJEJ9sORFiAj_-Mq6z7JcKudMxUZh8Z2MWIdmYxGZK5DsN-GzKfzBVmdQmP24Ta6KnUVzN3f7EeryXg9fI1ni5fp8HkWF1RiEycb5KmGTYkccyoNaKR5wSQKk0mpU5byBNI00VpDUZg8p5rlooBCGIaU9aPHrvVQ-6-jCY3a-WPt2oOKUqCZxJTxloKOKmofQm1KdajbF-qTQlBnh6p1qM4O1Z_DNvLQRawx5h_PhGAsEewX7OVs5Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2202891734</pqid></control><display><type>article</type><title>Information-Theoretic Pilot Design for Downlink Channel Estimation in FDD Massive MIMO Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Yujie Gu ; Zhang, Yimin D.</creator><creatorcontrib>Yujie Gu ; Zhang, Yimin D.</creatorcontrib><description>Massive multiple-input multiple-output (MIMO) is one of the most promising techniques for next generation wireless communications due to its superior capability to provide high spectrum and energy efficiency. Considering the very large number of antennas employed at the base station, however, the pilot overhead for downlink channel estimation becomes unaffordable in frequency division duplex (FDD) multiuser massive MIMO systems. In this paper, we propose an information-theoretic metric to design the pilot for downlink channel estimation in FDD multiuser massive MIMO systems. By exploiting the low-rank nature of the channel covariance matrix, we first derive the minimum number of pilot symbols required to ensure perfect channel recovery, which is much less than the number of antennas at the base station. Further, under a general channel model that the channel vector of each user follows a Gaussian mixture distribution, the pilot symbols are designed by maximizing the weighted sum of the Shannon mutual information between the measurements of the users and their corresponding channel vectors on the complex Grassmannian manifold. Simulation results demonstrate the effectiveness of the proposed information-theoretic pilot design for the downlink channel estimation in FDD massive MIMO systems.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2019.2904018</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Antennas ; Base stations ; Channel estimation ; Computer simulation ; Covariance matrices ; Covariance matrix ; Downlink ; frequency division duplex (FDD) ; Frequency division duplexing ; Gaussian distribution ; Gaussian mixture distribution ; Grassmannian manifold ; Information theory ; information-theoretic metric ; Manifolds (mathematics) ; massive multiple-input multiple-output (MIMO) ; MIMO (control systems) ; MIMO communication ; pilot design ; Symbols ; Training ; Wireless communications</subject><ispartof>IEEE transactions on signal processing, 2019-05, Vol.67 (9), p.2334-2346</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-5d147a0df141b29e0a12bc3916e899a737450775aaa0ccebb2a3b6c0c6e3123</citedby><cites>FETCH-LOGICAL-c291t-5d147a0df141b29e0a12bc3916e899a737450775aaa0ccebb2a3b6c0c6e3123</cites><orcidid>0000-0003-1312-1605 ; 0000-0002-4625-209X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8663356$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8663356$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yujie Gu</creatorcontrib><creatorcontrib>Zhang, Yimin D.</creatorcontrib><title>Information-Theoretic Pilot Design for Downlink Channel Estimation in FDD Massive MIMO Systems</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Massive multiple-input multiple-output (MIMO) is one of the most promising techniques for next generation wireless communications due to its superior capability to provide high spectrum and energy efficiency. Considering the very large number of antennas employed at the base station, however, the pilot overhead for downlink channel estimation becomes unaffordable in frequency division duplex (FDD) multiuser massive MIMO systems. In this paper, we propose an information-theoretic metric to design the pilot for downlink channel estimation in FDD multiuser massive MIMO systems. By exploiting the low-rank nature of the channel covariance matrix, we first derive the minimum number of pilot symbols required to ensure perfect channel recovery, which is much less than the number of antennas at the base station. Further, under a general channel model that the channel vector of each user follows a Gaussian mixture distribution, the pilot symbols are designed by maximizing the weighted sum of the Shannon mutual information between the measurements of the users and their corresponding channel vectors on the complex Grassmannian manifold. Simulation results demonstrate the effectiveness of the proposed information-theoretic pilot design for the downlink channel estimation in FDD massive MIMO systems.</description><subject>Antennas</subject><subject>Base stations</subject><subject>Channel estimation</subject><subject>Computer simulation</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Downlink</subject><subject>frequency division duplex (FDD)</subject><subject>Frequency division duplexing</subject><subject>Gaussian distribution</subject><subject>Gaussian mixture distribution</subject><subject>Grassmannian manifold</subject><subject>Information theory</subject><subject>information-theoretic metric</subject><subject>Manifolds (mathematics)</subject><subject>massive multiple-input multiple-output (MIMO)</subject><subject>MIMO (control systems)</subject><subject>MIMO communication</subject><subject>pilot design</subject><subject>Symbols</subject><subject>Training</subject><subject>Wireless communications</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kD1PwzAQhiMEEqWwI7FYYk65sx0nHlE_oFKrVmoHJiwndahLapc4BfXfkyqI6W543vd0TxTdIwwQQT6tV8sBBZQDKoEDZhdRDyXHGHgqLtsdEhYnWfp2Hd2EsANAzqXoRe9TV_p6rxvrXbzeGl-bxhZkaSvfkJEJ9sORFiAj_-Mq6z7JcKudMxUZh8Z2MWIdmYxGZK5DsN-GzKfzBVmdQmP24Ta6KnUVzN3f7EeryXg9fI1ni5fp8HkWF1RiEycb5KmGTYkccyoNaKR5wSQKk0mpU5byBNI00VpDUZg8p5rlooBCGIaU9aPHrvVQ-6-jCY3a-WPt2oOKUqCZxJTxloKOKmofQm1KdajbF-qTQlBnh6p1qM4O1Z_DNvLQRawx5h_PhGAsEewX7OVs5Q</recordid><startdate>20190501</startdate><enddate>20190501</enddate><creator>Yujie Gu</creator><creator>Zhang, Yimin D.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-1312-1605</orcidid><orcidid>https://orcid.org/0000-0002-4625-209X</orcidid></search><sort><creationdate>20190501</creationdate><title>Information-Theoretic Pilot Design for Downlink Channel Estimation in FDD Massive MIMO Systems</title><author>Yujie Gu ; Zhang, Yimin D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-5d147a0df141b29e0a12bc3916e899a737450775aaa0ccebb2a3b6c0c6e3123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Antennas</topic><topic>Base stations</topic><topic>Channel estimation</topic><topic>Computer simulation</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Downlink</topic><topic>frequency division duplex (FDD)</topic><topic>Frequency division duplexing</topic><topic>Gaussian distribution</topic><topic>Gaussian mixture distribution</topic><topic>Grassmannian manifold</topic><topic>Information theory</topic><topic>information-theoretic metric</topic><topic>Manifolds (mathematics)</topic><topic>massive multiple-input multiple-output (MIMO)</topic><topic>MIMO (control systems)</topic><topic>MIMO communication</topic><topic>pilot design</topic><topic>Symbols</topic><topic>Training</topic><topic>Wireless communications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yujie Gu</creatorcontrib><creatorcontrib>Zhang, Yimin D.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yujie Gu</au><au>Zhang, Yimin D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Information-Theoretic Pilot Design for Downlink Channel Estimation in FDD Massive MIMO Systems</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2019-05-01</date><risdate>2019</risdate><volume>67</volume><issue>9</issue><spage>2334</spage><epage>2346</epage><pages>2334-2346</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Massive multiple-input multiple-output (MIMO) is one of the most promising techniques for next generation wireless communications due to its superior capability to provide high spectrum and energy efficiency. Considering the very large number of antennas employed at the base station, however, the pilot overhead for downlink channel estimation becomes unaffordable in frequency division duplex (FDD) multiuser massive MIMO systems. In this paper, we propose an information-theoretic metric to design the pilot for downlink channel estimation in FDD multiuser massive MIMO systems. By exploiting the low-rank nature of the channel covariance matrix, we first derive the minimum number of pilot symbols required to ensure perfect channel recovery, which is much less than the number of antennas at the base station. Further, under a general channel model that the channel vector of each user follows a Gaussian mixture distribution, the pilot symbols are designed by maximizing the weighted sum of the Shannon mutual information between the measurements of the users and their corresponding channel vectors on the complex Grassmannian manifold. Simulation results demonstrate the effectiveness of the proposed information-theoretic pilot design for the downlink channel estimation in FDD massive MIMO systems.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSP.2019.2904018</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-1312-1605</orcidid><orcidid>https://orcid.org/0000-0002-4625-209X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2019-05, Vol.67 (9), p.2334-2346
issn 1053-587X
1941-0476
language eng
recordid cdi_ieee_primary_8663356
source IEEE Electronic Library (IEL)
subjects Antennas
Base stations
Channel estimation
Computer simulation
Covariance matrices
Covariance matrix
Downlink
frequency division duplex (FDD)
Frequency division duplexing
Gaussian distribution
Gaussian mixture distribution
Grassmannian manifold
Information theory
information-theoretic metric
Manifolds (mathematics)
massive multiple-input multiple-output (MIMO)
MIMO (control systems)
MIMO communication
pilot design
Symbols
Training
Wireless communications
title Information-Theoretic Pilot Design for Downlink Channel Estimation in FDD Massive MIMO Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T23%3A34%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Information-Theoretic%20Pilot%20Design%20for%20Downlink%20Channel%20Estimation%20in%20FDD%20Massive%20MIMO%20Systems&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Yujie%20Gu&rft.date=2019-05-01&rft.volume=67&rft.issue=9&rft.spage=2334&rft.epage=2346&rft.pages=2334-2346&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2019.2904018&rft_dat=%3Cproquest_RIE%3E2202891734%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2202891734&rft_id=info:pmid/&rft_ieee_id=8663356&rfr_iscdi=true