High heat flux heat pipe mechanism for cooling of electronics
This paper discusses an advanced heat pipe mechanism that has the potential of achieving heat flux capabilities over 250 W/cm/sup 2/. The mechanism utilizes thermally driven pulsating two-phase flow to achieve high heat flux capability and heat transfer coefficient. A simplified hydrodynamic model w...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper discusses an advanced heat pipe mechanism that has the potential of achieving heat flux capabilities over 250 W/cm/sup 2/. The mechanism utilizes thermally driven pulsating two-phase flow to achieve high heat flux capability and heat transfer coefficient. A simplified hydrodynamic model was developed to guide the proof-of-concept heat pipe design. A more detailed numerical model was also developed and is solved to predict the heat pipe's thermal performance. Test results of proof-of-concept heat pipes verified the heat flux capability of the advanced mechanism and the accuracy of the simplified model. Pulsating heat pipes are feasible approaches to removing increasing heat dissipation densities in electronic equipment. |
---|---|
ISSN: | 1089-9870 |
DOI: | 10.1109/ITHERM.2000.866180 |