Fault Diagnosis of Power Transformers With Membership Degree
Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high c...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.28791-28798 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 28798 |
---|---|
container_issue | |
container_start_page | 28791 |
container_title | IEEE access |
container_volume | 7 |
creator | Li, Enwen Wang, Linong Song, Bin |
description | Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high correct rate is reported with intelligent methods as artificial neural network, support vector machine, and so on, these methods are usually too complicated to be implemented practically on a wide range. Based on clustering techniques, this paper proposes a new method for fault diagnosis of transformers with the DGA. A reference fault set is provided, and the fault diagnosis is implemented by calculating the membership of the DGA data to the reference fault set. Test with credible DGA dataset (201 field cases) shows that the correct rate of the new method is 89%, while the David triangle method is 79% and the IEC ratio method is 59%, which demonstrate the superiority of the proposed method to the conventional ones. The new method is simple and highly accurate, indicating a good application prospect in engineering practice. |
doi_str_mv | 10.1109/ACCESS.2019.2902299 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8654646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8654646</ieee_id><doaj_id>oai_doaj_org_article_8c73b5aa854c456faa314530aefdcf35</doaj_id><sourcerecordid>2455615837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3c9f0b7e4595e9cbc0d8d9be938bd7ca34fcc3f36692e2644c8653e33ef8dec03</originalsourceid><addsrcrecordid>eNpNkEtLAzEQx4MoWGo_QS8LnluzO0k2AS-lDy1UFFrxGLLZSbulbWqyRfz2bl0pzmUezH8eP0L6KR2mKVUPo_F4ulwOM5qqYaZolil1RTpZKtQAOIjrf_Et6cW4pY3JpsTzDnmcmdOuTiaVWR98rGLiXfLmvzAkq2AO0fmwxxCTj6reJC-4L5pkUx2TCa4D4h25cWYXsffnu-R9Nl2NnweL16f5eLQYWEZlPQCrHC1yZFxxVLawtJSlKlCBLMrcGmDOWnAghMowE4xZKTggADpZoqXQJfN2bunNVh9DtTfhW3tT6d-CD2ttQl3ZHWppcyi4MZIzy7hwxkDKOFCDrrSuYdAl9-2sY_CfJ4y13vpTODTn64xxLlIuIW-6oO2ywccY0F22plSfqeuWuj5T13_UG1W_VVWIeFE0zzDBBPwAUjJ9kg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455615837</pqid></control><display><type>article</type><title>Fault Diagnosis of Power Transformers With Membership Degree</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Enwen ; Wang, Linong ; Song, Bin</creator><creatorcontrib>Li, Enwen ; Wang, Linong ; Song, Bin</creatorcontrib><description>Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high correct rate is reported with intelligent methods as artificial neural network, support vector machine, and so on, these methods are usually too complicated to be implemented practically on a wide range. Based on clustering techniques, this paper proposes a new method for fault diagnosis of transformers with the DGA. A reference fault set is provided, and the fault diagnosis is implemented by calculating the membership of the DGA data to the reference fault set. Test with credible DGA dataset (201 field cases) shows that the correct rate of the new method is 89%, while the David triangle method is 79% and the IEC ratio method is 59%, which demonstrate the superiority of the proposed method to the conventional ones. The new method is simple and highly accurate, indicating a good application prospect in engineering practice.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2902299</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Clustering ; Dissolved gases ; Fault detection ; Fault diagnosis ; fuzzy clustering ; Gas analysis ; Gases ; Genetic algorithms ; Hydrocarbons ; membership degree ; Oils ; Power transformer ; Power transformer insulation ; Support vector machines ; Transformers</subject><ispartof>IEEE access, 2019, Vol.7, p.28791-28798</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3c9f0b7e4595e9cbc0d8d9be938bd7ca34fcc3f36692e2644c8653e33ef8dec03</citedby><cites>FETCH-LOGICAL-c408t-3c9f0b7e4595e9cbc0d8d9be938bd7ca34fcc3f36692e2644c8653e33ef8dec03</cites><orcidid>0000-0002-2249-8140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8654646$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Enwen</creatorcontrib><creatorcontrib>Wang, Linong</creatorcontrib><creatorcontrib>Song, Bin</creatorcontrib><title>Fault Diagnosis of Power Transformers With Membership Degree</title><title>IEEE access</title><addtitle>Access</addtitle><description>Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high correct rate is reported with intelligent methods as artificial neural network, support vector machine, and so on, these methods are usually too complicated to be implemented practically on a wide range. Based on clustering techniques, this paper proposes a new method for fault diagnosis of transformers with the DGA. A reference fault set is provided, and the fault diagnosis is implemented by calculating the membership of the DGA data to the reference fault set. Test with credible DGA dataset (201 field cases) shows that the correct rate of the new method is 89%, while the David triangle method is 79% and the IEC ratio method is 59%, which demonstrate the superiority of the proposed method to the conventional ones. The new method is simple and highly accurate, indicating a good application prospect in engineering practice.</description><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Dissolved gases</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fuzzy clustering</subject><subject>Gas analysis</subject><subject>Gases</subject><subject>Genetic algorithms</subject><subject>Hydrocarbons</subject><subject>membership degree</subject><subject>Oils</subject><subject>Power transformer</subject><subject>Power transformer insulation</subject><subject>Support vector machines</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtLAzEQx4MoWGo_QS8LnluzO0k2AS-lDy1UFFrxGLLZSbulbWqyRfz2bl0pzmUezH8eP0L6KR2mKVUPo_F4ulwOM5qqYaZolil1RTpZKtQAOIjrf_Et6cW4pY3JpsTzDnmcmdOuTiaVWR98rGLiXfLmvzAkq2AO0fmwxxCTj6reJC-4L5pkUx2TCa4D4h25cWYXsffnu-R9Nl2NnweL16f5eLQYWEZlPQCrHC1yZFxxVLawtJSlKlCBLMrcGmDOWnAghMowE4xZKTggADpZoqXQJfN2bunNVh9DtTfhW3tT6d-CD2ttQl3ZHWppcyi4MZIzy7hwxkDKOFCDrrSuYdAl9-2sY_CfJ4y13vpTODTn64xxLlIuIW-6oO2ywccY0F22plSfqeuWuj5T13_UG1W_VVWIeFE0zzDBBPwAUjJ9kg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Enwen</creator><creator>Wang, Linong</creator><creator>Song, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2249-8140</orcidid></search><sort><creationdate>2019</creationdate><title>Fault Diagnosis of Power Transformers With Membership Degree</title><author>Li, Enwen ; Wang, Linong ; Song, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3c9f0b7e4595e9cbc0d8d9be938bd7ca34fcc3f36692e2644c8653e33ef8dec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Dissolved gases</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fuzzy clustering</topic><topic>Gas analysis</topic><topic>Gases</topic><topic>Genetic algorithms</topic><topic>Hydrocarbons</topic><topic>membership degree</topic><topic>Oils</topic><topic>Power transformer</topic><topic>Power transformer insulation</topic><topic>Support vector machines</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Enwen</creatorcontrib><creatorcontrib>Wang, Linong</creatorcontrib><creatorcontrib>Song, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Enwen</au><au>Wang, Linong</au><au>Song, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis of Power Transformers With Membership Degree</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>28791</spage><epage>28798</epage><pages>28791-28798</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high correct rate is reported with intelligent methods as artificial neural network, support vector machine, and so on, these methods are usually too complicated to be implemented practically on a wide range. Based on clustering techniques, this paper proposes a new method for fault diagnosis of transformers with the DGA. A reference fault set is provided, and the fault diagnosis is implemented by calculating the membership of the DGA data to the reference fault set. Test with credible DGA dataset (201 field cases) shows that the correct rate of the new method is 89%, while the David triangle method is 79% and the IEC ratio method is 59%, which demonstrate the superiority of the proposed method to the conventional ones. The new method is simple and highly accurate, indicating a good application prospect in engineering practice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2902299</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2249-8140</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.28791-28798 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8654646 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Artificial neural networks Clustering Dissolved gases Fault detection Fault diagnosis fuzzy clustering Gas analysis Gases Genetic algorithms Hydrocarbons membership degree Oils Power transformer Power transformer insulation Support vector machines Transformers |
title | Fault Diagnosis of Power Transformers With Membership Degree |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20of%20Power%20Transformers%20With%20Membership%20Degree&rft.jtitle=IEEE%20access&rft.au=Li,%20Enwen&rft.date=2019&rft.volume=7&rft.spage=28791&rft.epage=28798&rft.pages=28791-28798&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2902299&rft_dat=%3Cproquest_ieee_%3E2455615837%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455615837&rft_id=info:pmid/&rft_ieee_id=8654646&rft_doaj_id=oai_doaj_org_article_8c73b5aa854c456faa314530aefdcf35&rfr_iscdi=true |