Fault Diagnosis of Power Transformers With Membership Degree

Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.28791-28798
Hauptverfasser: Li, Enwen, Wang, Linong, Song, Bin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28798
container_issue
container_start_page 28791
container_title IEEE access
container_volume 7
creator Li, Enwen
Wang, Linong
Song, Bin
description Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high correct rate is reported with intelligent methods as artificial neural network, support vector machine, and so on, these methods are usually too complicated to be implemented practically on a wide range. Based on clustering techniques, this paper proposes a new method for fault diagnosis of transformers with the DGA. A reference fault set is provided, and the fault diagnosis is implemented by calculating the membership of the DGA data to the reference fault set. Test with credible DGA dataset (201 field cases) shows that the correct rate of the new method is 89%, while the David triangle method is 79% and the IEC ratio method is 59%, which demonstrate the superiority of the proposed method to the conventional ones. The new method is simple and highly accurate, indicating a good application prospect in engineering practice.
doi_str_mv 10.1109/ACCESS.2019.2902299
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8654646</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8654646</ieee_id><doaj_id>oai_doaj_org_article_8c73b5aa854c456faa314530aefdcf35</doaj_id><sourcerecordid>2455615837</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-3c9f0b7e4595e9cbc0d8d9be938bd7ca34fcc3f36692e2644c8653e33ef8dec03</originalsourceid><addsrcrecordid>eNpNkEtLAzEQx4MoWGo_QS8LnluzO0k2AS-lDy1UFFrxGLLZSbulbWqyRfz2bl0pzmUezH8eP0L6KR2mKVUPo_F4ulwOM5qqYaZolil1RTpZKtQAOIjrf_Et6cW4pY3JpsTzDnmcmdOuTiaVWR98rGLiXfLmvzAkq2AO0fmwxxCTj6reJC-4L5pkUx2TCa4D4h25cWYXsffnu-R9Nl2NnweL16f5eLQYWEZlPQCrHC1yZFxxVLawtJSlKlCBLMrcGmDOWnAghMowE4xZKTggADpZoqXQJfN2bunNVh9DtTfhW3tT6d-CD2ttQl3ZHWppcyi4MZIzy7hwxkDKOFCDrrSuYdAl9-2sY_CfJ4y13vpTODTn64xxLlIuIW-6oO2ywccY0F22plSfqeuWuj5T13_UG1W_VVWIeFE0zzDBBPwAUjJ9kg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455615837</pqid></control><display><type>article</type><title>Fault Diagnosis of Power Transformers With Membership Degree</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Enwen ; Wang, Linong ; Song, Bin</creator><creatorcontrib>Li, Enwen ; Wang, Linong ; Song, Bin</creatorcontrib><description>Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high correct rate is reported with intelligent methods as artificial neural network, support vector machine, and so on, these methods are usually too complicated to be implemented practically on a wide range. Based on clustering techniques, this paper proposes a new method for fault diagnosis of transformers with the DGA. A reference fault set is provided, and the fault diagnosis is implemented by calculating the membership of the DGA data to the reference fault set. Test with credible DGA dataset (201 field cases) shows that the correct rate of the new method is 89%, while the David triangle method is 79% and the IEC ratio method is 59%, which demonstrate the superiority of the proposed method to the conventional ones. The new method is simple and highly accurate, indicating a good application prospect in engineering practice.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2902299</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Clustering ; Dissolved gases ; Fault detection ; Fault diagnosis ; fuzzy clustering ; Gas analysis ; Gases ; Genetic algorithms ; Hydrocarbons ; membership degree ; Oils ; Power transformer ; Power transformer insulation ; Support vector machines ; Transformers</subject><ispartof>IEEE access, 2019, Vol.7, p.28791-28798</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-3c9f0b7e4595e9cbc0d8d9be938bd7ca34fcc3f36692e2644c8653e33ef8dec03</citedby><cites>FETCH-LOGICAL-c408t-3c9f0b7e4595e9cbc0d8d9be938bd7ca34fcc3f36692e2644c8653e33ef8dec03</cites><orcidid>0000-0002-2249-8140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8654646$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Enwen</creatorcontrib><creatorcontrib>Wang, Linong</creatorcontrib><creatorcontrib>Song, Bin</creatorcontrib><title>Fault Diagnosis of Power Transformers With Membership Degree</title><title>IEEE access</title><addtitle>Access</addtitle><description>Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high correct rate is reported with intelligent methods as artificial neural network, support vector machine, and so on, these methods are usually too complicated to be implemented practically on a wide range. Based on clustering techniques, this paper proposes a new method for fault diagnosis of transformers with the DGA. A reference fault set is provided, and the fault diagnosis is implemented by calculating the membership of the DGA data to the reference fault set. Test with credible DGA dataset (201 field cases) shows that the correct rate of the new method is 89%, while the David triangle method is 79% and the IEC ratio method is 59%, which demonstrate the superiority of the proposed method to the conventional ones. The new method is simple and highly accurate, indicating a good application prospect in engineering practice.</description><subject>Artificial neural networks</subject><subject>Clustering</subject><subject>Dissolved gases</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>fuzzy clustering</subject><subject>Gas analysis</subject><subject>Gases</subject><subject>Genetic algorithms</subject><subject>Hydrocarbons</subject><subject>membership degree</subject><subject>Oils</subject><subject>Power transformer</subject><subject>Power transformer insulation</subject><subject>Support vector machines</subject><subject>Transformers</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNkEtLAzEQx4MoWGo_QS8LnluzO0k2AS-lDy1UFFrxGLLZSbulbWqyRfz2bl0pzmUezH8eP0L6KR2mKVUPo_F4ulwOM5qqYaZolil1RTpZKtQAOIjrf_Et6cW4pY3JpsTzDnmcmdOuTiaVWR98rGLiXfLmvzAkq2AO0fmwxxCTj6reJC-4L5pkUx2TCa4D4h25cWYXsffnu-R9Nl2NnweL16f5eLQYWEZlPQCrHC1yZFxxVLawtJSlKlCBLMrcGmDOWnAghMowE4xZKTggADpZoqXQJfN2bunNVh9DtTfhW3tT6d-CD2ttQl3ZHWppcyi4MZIzy7hwxkDKOFCDrrSuYdAl9-2sY_CfJ4y13vpTODTn64xxLlIuIW-6oO2ywccY0F22plSfqeuWuj5T13_UG1W_VVWIeFE0zzDBBPwAUjJ9kg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Li, Enwen</creator><creator>Wang, Linong</creator><creator>Song, Bin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2249-8140</orcidid></search><sort><creationdate>2019</creationdate><title>Fault Diagnosis of Power Transformers With Membership Degree</title><author>Li, Enwen ; Wang, Linong ; Song, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-3c9f0b7e4595e9cbc0d8d9be938bd7ca34fcc3f36692e2644c8653e33ef8dec03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Clustering</topic><topic>Dissolved gases</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>fuzzy clustering</topic><topic>Gas analysis</topic><topic>Gases</topic><topic>Genetic algorithms</topic><topic>Hydrocarbons</topic><topic>membership degree</topic><topic>Oils</topic><topic>Power transformer</topic><topic>Power transformer insulation</topic><topic>Support vector machines</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Enwen</creatorcontrib><creatorcontrib>Wang, Linong</creatorcontrib><creatorcontrib>Song, Bin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Enwen</au><au>Wang, Linong</au><au>Song, Bin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fault Diagnosis of Power Transformers With Membership Degree</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>28791</spage><epage>28798</epage><pages>28791-28798</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Power transformers are important equipment for power systems, and a dissolved gas analysis (DGA) is widely used to detect incipient faults in oil-pregnant transformers. The conventional methods are prone to misinterpreting the gas data near the boundaries and the correct rate is low. Though a high correct rate is reported with intelligent methods as artificial neural network, support vector machine, and so on, these methods are usually too complicated to be implemented practically on a wide range. Based on clustering techniques, this paper proposes a new method for fault diagnosis of transformers with the DGA. A reference fault set is provided, and the fault diagnosis is implemented by calculating the membership of the DGA data to the reference fault set. Test with credible DGA dataset (201 field cases) shows that the correct rate of the new method is 89%, while the David triangle method is 79% and the IEC ratio method is 59%, which demonstrate the superiority of the proposed method to the conventional ones. The new method is simple and highly accurate, indicating a good application prospect in engineering practice.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2902299</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-2249-8140</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.28791-28798
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8654646
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Artificial neural networks
Clustering
Dissolved gases
Fault detection
Fault diagnosis
fuzzy clustering
Gas analysis
Gases
Genetic algorithms
Hydrocarbons
membership degree
Oils
Power transformer
Power transformer insulation
Support vector machines
Transformers
title Fault Diagnosis of Power Transformers With Membership Degree
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T05%3A06%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fault%20Diagnosis%20of%20Power%20Transformers%20With%20Membership%20Degree&rft.jtitle=IEEE%20access&rft.au=Li,%20Enwen&rft.date=2019&rft.volume=7&rft.spage=28791&rft.epage=28798&rft.pages=28791-28798&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2902299&rft_dat=%3Cproquest_ieee_%3E2455615837%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455615837&rft_id=info:pmid/&rft_ieee_id=8654646&rft_doaj_id=oai_doaj_org_article_8c73b5aa854c456faa314530aefdcf35&rfr_iscdi=true