Robust Visual Tracking With Spatial Regularization Kernelized Correlation Filter Constrained by a Learning Spatial Reliability Map

As a basic research topic in computer vision, visual tracking is still challenging because of the complexity of the tracking problems, such as abrupt motion, out-of-view, deformation, and heavy occlusion. In this paper, we extend the kernelized correlation filter (CF) for robust tracking by introduc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.27339-27351
Hauptverfasser: Liu, Qianbo, Hu, Guoqing, Islam, Md Mojahidul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27351
container_issue
container_start_page 27339
container_title IEEE access
container_volume 7
creator Liu, Qianbo
Hu, Guoqing
Islam, Md Mojahidul
description As a basic research topic in computer vision, visual tracking is still challenging because of the complexity of the tracking problems, such as abrupt motion, out-of-view, deformation, and heavy occlusion. In this paper, we extend the kernelized correlation filter (CF) for robust tracking by introducing spatial regularization components to penalize the CF coefficients. To afford a more confident prediction, we construct a spatial reliability map based on the color histogram to enforce the detecting samples near the target center. The feature fusion and the model update mechanism are further employed to improve the effectiveness of tracking. The extensive experiments are executed on the OTB-2013, OTB-2015, and Temple Color-128 datasets. The comprehensive results demonstrate the superiority of our proposed method comparing to the representative tracks on these datasets.
doi_str_mv 10.1109/ACCESS.2019.2902216
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8654600</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8654600</ieee_id><doaj_id>oai_doaj_org_article_04446fde4d7d486695d141d691f23fbc</doaj_id><sourcerecordid>2455637766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-2e7c25b73b823de17a919447fb954760054c3921f437307070e080366c0d5aef3</originalsourceid><addsrcrecordid>eNpNUU1v1DAQjRBIVG1_QS-WOO_ib8fHKmqhYiukboGj5cSTxYuJF9s5bI_8crykKngkf7yZ98b2a5orgteEYP3-uututts1xUSvqcaUEvmqOauzXjHB5Ov_9m-by5z3uI62QkKdNb8fYj_ngr76PNuAHpMdfvhph7758h1tD7b4ij7Abg42-ad6jBP6BGmC4J_AoS6mBGGBb30okCo05ZKsn2q6PyKLNmDTdNL8Jxe87X3w5Yju7eGieTPakOHyeT1vvtzePHYfV5vPH-66681q4KItKwpqoKJXrG8pc0CU1URzrsZeC64kxoIPTFMycqYYVjUAt5hJOWAnLIzsvLlbdF20e3NI_qdNRxOtN3-BmHbGpuKHAAZzzuXogDvleCvrVznCiZOajJSN_VC13i1ahxR_zZCL2cc5TfX6hnIhJFNKylrFlqohxZwTjC9dCTYn78zinTl5Z569q6yrheUB4IXRSsHrI9kfy0OVPQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455637766</pqid></control><display><type>article</type><title>Robust Visual Tracking With Spatial Regularization Kernelized Correlation Filter Constrained by a Learning Spatial Reliability Map</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Liu, Qianbo ; Hu, Guoqing ; Islam, Md Mojahidul</creator><creatorcontrib>Liu, Qianbo ; Hu, Guoqing ; Islam, Md Mojahidul</creatorcontrib><description>As a basic research topic in computer vision, visual tracking is still challenging because of the complexity of the tracking problems, such as abrupt motion, out-of-view, deformation, and heavy occlusion. In this paper, we extend the kernelized correlation filter (CF) for robust tracking by introducing spatial regularization components to penalize the CF coefficients. To afford a more confident prediction, we construct a spatial reliability map based on the color histogram to enforce the detecting samples near the target center. The feature fusion and the model update mechanism are further employed to improve the effectiveness of tracking. The extensive experiments are executed on the OTB-2013, OTB-2015, and Temple Color-128 datasets. The comprehensive results demonstrate the superiority of our proposed method comparing to the representative tracks on these datasets.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2902216</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Color ; Computer vision ; Correlation ; Datasets ; Feature fusion ; Histograms ; Image color analysis ; model update mechanism ; Occlusion ; Optical tracking ; Regularization ; Reliability ; Robustness ; spatial regularization components ; spatial reliability map ; Target detection ; Target tracking ; Visualization</subject><ispartof>IEEE access, 2019, Vol.7, p.27339-27351</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-2e7c25b73b823de17a919447fb954760054c3921f437307070e080366c0d5aef3</citedby><cites>FETCH-LOGICAL-c458t-2e7c25b73b823de17a919447fb954760054c3921f437307070e080366c0d5aef3</cites><orcidid>0000-0002-4334-065X ; 0000-0002-8408-4939</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8654600$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2101,4023,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Liu, Qianbo</creatorcontrib><creatorcontrib>Hu, Guoqing</creatorcontrib><creatorcontrib>Islam, Md Mojahidul</creatorcontrib><title>Robust Visual Tracking With Spatial Regularization Kernelized Correlation Filter Constrained by a Learning Spatial Reliability Map</title><title>IEEE access</title><addtitle>Access</addtitle><description>As a basic research topic in computer vision, visual tracking is still challenging because of the complexity of the tracking problems, such as abrupt motion, out-of-view, deformation, and heavy occlusion. In this paper, we extend the kernelized correlation filter (CF) for robust tracking by introducing spatial regularization components to penalize the CF coefficients. To afford a more confident prediction, we construct a spatial reliability map based on the color histogram to enforce the detecting samples near the target center. The feature fusion and the model update mechanism are further employed to improve the effectiveness of tracking. The extensive experiments are executed on the OTB-2013, OTB-2015, and Temple Color-128 datasets. The comprehensive results demonstrate the superiority of our proposed method comparing to the representative tracks on these datasets.</description><subject>Color</subject><subject>Computer vision</subject><subject>Correlation</subject><subject>Datasets</subject><subject>Feature fusion</subject><subject>Histograms</subject><subject>Image color analysis</subject><subject>model update mechanism</subject><subject>Occlusion</subject><subject>Optical tracking</subject><subject>Regularization</subject><subject>Reliability</subject><subject>Robustness</subject><subject>spatial regularization components</subject><subject>spatial reliability map</subject><subject>Target detection</subject><subject>Target tracking</subject><subject>Visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1v1DAQjRBIVG1_QS-WOO_ib8fHKmqhYiukboGj5cSTxYuJF9s5bI_8crykKngkf7yZ98b2a5orgteEYP3-uututts1xUSvqcaUEvmqOauzXjHB5Ov_9m-by5z3uI62QkKdNb8fYj_ngr76PNuAHpMdfvhph7758h1tD7b4ij7Abg42-ad6jBP6BGmC4J_AoS6mBGGBb30okCo05ZKsn2q6PyKLNmDTdNL8Jxe87X3w5Yju7eGieTPakOHyeT1vvtzePHYfV5vPH-66681q4KItKwpqoKJXrG8pc0CU1URzrsZeC64kxoIPTFMycqYYVjUAt5hJOWAnLIzsvLlbdF20e3NI_qdNRxOtN3-BmHbGpuKHAAZzzuXogDvleCvrVznCiZOajJSN_VC13i1ahxR_zZCL2cc5TfX6hnIhJFNKylrFlqohxZwTjC9dCTYn78zinTl5Z569q6yrheUB4IXRSsHrI9kfy0OVPQ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Liu, Qianbo</creator><creator>Hu, Guoqing</creator><creator>Islam, Md Mojahidul</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4334-065X</orcidid><orcidid>https://orcid.org/0000-0002-8408-4939</orcidid></search><sort><creationdate>2019</creationdate><title>Robust Visual Tracking With Spatial Regularization Kernelized Correlation Filter Constrained by a Learning Spatial Reliability Map</title><author>Liu, Qianbo ; Hu, Guoqing ; Islam, Md Mojahidul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-2e7c25b73b823de17a919447fb954760054c3921f437307070e080366c0d5aef3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Color</topic><topic>Computer vision</topic><topic>Correlation</topic><topic>Datasets</topic><topic>Feature fusion</topic><topic>Histograms</topic><topic>Image color analysis</topic><topic>model update mechanism</topic><topic>Occlusion</topic><topic>Optical tracking</topic><topic>Regularization</topic><topic>Reliability</topic><topic>Robustness</topic><topic>spatial regularization components</topic><topic>spatial reliability map</topic><topic>Target detection</topic><topic>Target tracking</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Qianbo</creatorcontrib><creatorcontrib>Hu, Guoqing</creatorcontrib><creatorcontrib>Islam, Md Mojahidul</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Qianbo</au><au>Hu, Guoqing</au><au>Islam, Md Mojahidul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Visual Tracking With Spatial Regularization Kernelized Correlation Filter Constrained by a Learning Spatial Reliability Map</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>27339</spage><epage>27351</epage><pages>27339-27351</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>As a basic research topic in computer vision, visual tracking is still challenging because of the complexity of the tracking problems, such as abrupt motion, out-of-view, deformation, and heavy occlusion. In this paper, we extend the kernelized correlation filter (CF) for robust tracking by introducing spatial regularization components to penalize the CF coefficients. To afford a more confident prediction, we construct a spatial reliability map based on the color histogram to enforce the detecting samples near the target center. The feature fusion and the model update mechanism are further employed to improve the effectiveness of tracking. The extensive experiments are executed on the OTB-2013, OTB-2015, and Temple Color-128 datasets. The comprehensive results demonstrate the superiority of our proposed method comparing to the representative tracks on these datasets.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2902216</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-4334-065X</orcidid><orcidid>https://orcid.org/0000-0002-8408-4939</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.27339-27351
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8654600
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Color
Computer vision
Correlation
Datasets
Feature fusion
Histograms
Image color analysis
model update mechanism
Occlusion
Optical tracking
Regularization
Reliability
Robustness
spatial regularization components
spatial reliability map
Target detection
Target tracking
Visualization
title Robust Visual Tracking With Spatial Regularization Kernelized Correlation Filter Constrained by a Learning Spatial Reliability Map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A54%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Visual%20Tracking%20With%20Spatial%20Regularization%20Kernelized%20Correlation%20Filter%20Constrained%20by%20a%20Learning%20Spatial%20Reliability%20Map&rft.jtitle=IEEE%20access&rft.au=Liu,%20Qianbo&rft.date=2019&rft.volume=7&rft.spage=27339&rft.epage=27351&rft.pages=27339-27351&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2902216&rft_dat=%3Cproquest_ieee_%3E2455637766%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455637766&rft_id=info:pmid/&rft_ieee_id=8654600&rft_doaj_id=oai_doaj_org_article_04446fde4d7d486695d141d691f23fbc&rfr_iscdi=true