A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts
This paper presents methods based on convolutional neural networks (CNNs) for removing compression artifacts. We modify the Inception module for the image restoration problem and use it as a building block for constructing blind and non-blind artifact removal networks. It is known that a CNN trained...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2020-04, Vol.30 (4), p.1121-1135 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1135 |
---|---|
container_issue | 4 |
container_start_page | 1121 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 30 |
creator | Kim, Yoonsik Soh, Jae Woong Park, Jaewoo Ahn, Byeongyong Lee, Hyun-Seung Moon, Young-Su Cho, Nam Ik |
description | This paper presents methods based on convolutional neural networks (CNNs) for removing compression artifacts. We modify the Inception module for the image restoration problem and use it as a building block for constructing blind and non-blind artifact removal networks. It is known that a CNN trained in a non-blind scenario (known compression quality factor) performs better than the one trained in a blind scenario (unknown factor), and our network is not an exception. However, the blind system is more practical because the compression quality factor is not always available or does not reflect the actual quality when the image is a transcoded or requantized image. Hence, in this paper, we also propose a pseudo-blind system that estimates the quality factor for a given compressed image and then applies a network that is trained with a similar quality factor. For this purpose, we propose a CNN that estimates the compression quality factor and prepare several non-blind artifact removal networks that are trained for some specific compression quality factors. We train the networks and conduct experiments on widely used compression standards, such as JPEG, MPEG-2, H.264, and HEVC. In addition, we conduct experiments for dynamically changing and transcoded videos to demonstrate the effectiveness of the quality estimation method. The experimental results show that the proposed pseudo-blind network performs better than the blind one for the various cases stated above and requires fewer computations. |
doi_str_mv | 10.1109/TCSVT.2019.2901919 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8653951</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8653951</ieee_id><sourcerecordid>2387069562</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-409d05cddf3ae90fde18f68f7626124b2b6aadc66cd1dfb889f1e2f0427f01823</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKd_QG8KXnfmpE2aXM7iFwwVnbsNWT6ws1tmkir-e9tNvDkf8D6Hw4PQOeAJABZX8_p1MZ8QDGJCRF9BHKARUMpzQjA97GdMIecE6DE6iXGFMZS8rEZoMc2eo-2Mz6_bZmOy2m--fNulxm9Umz3aLuxa-vbhI3M-ZOndZi_WdHqIZN71xHobbIzDOg2pcUqneIqOnGqjPfvrY_R2ezOv7_PZ091DPZ3lumCQ8hILg6k2xhXKCuyMBe4YdxUjDEi5JEumlNGMaQPGLTkXDixxuCSVw8BJMUaX-7vb4D87G5Nc-S70r0dJCl5hJigbUmSf0sHHGKyT29CsVfiRgOXgT-78ycGf_PPXQxd7qLHW_gOc0UJQKH4BWfNs_A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2387069562</pqid></control><display><type>article</type><title>A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts</title><source>IEEE Electronic Library (IEL)</source><creator>Kim, Yoonsik ; Soh, Jae Woong ; Park, Jaewoo ; Ahn, Byeongyong ; Lee, Hyun-Seung ; Moon, Young-Su ; Cho, Nam Ik</creator><creatorcontrib>Kim, Yoonsik ; Soh, Jae Woong ; Park, Jaewoo ; Ahn, Byeongyong ; Lee, Hyun-Seung ; Moon, Young-Su ; Cho, Nam Ik</creatorcontrib><description>This paper presents methods based on convolutional neural networks (CNNs) for removing compression artifacts. We modify the Inception module for the image restoration problem and use it as a building block for constructing blind and non-blind artifact removal networks. It is known that a CNN trained in a non-blind scenario (known compression quality factor) performs better than the one trained in a blind scenario (unknown factor), and our network is not an exception. However, the blind system is more practical because the compression quality factor is not always available or does not reflect the actual quality when the image is a transcoded or requantized image. Hence, in this paper, we also propose a pseudo-blind system that estimates the quality factor for a given compressed image and then applies a network that is trained with a similar quality factor. For this purpose, we propose a CNN that estimates the compression quality factor and prepare several non-blind artifact removal networks that are trained for some specific compression quality factors. We train the networks and conduct experiments on widely used compression standards, such as JPEG, MPEG-2, H.264, and HEVC. In addition, we conduct experiments for dynamically changing and transcoded videos to demonstrate the effectiveness of the quality estimation method. The experimental results show that the proposed pseudo-blind network performs better than the blind one for the various cases stated above and requires fewer computations.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2019.2901919</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; compression artifacts ; compression quality factor ; Convolutional neural network ; Decoding ; Image coding ; Image compression ; Image quality ; Image restoration ; inception ; Kernel ; Neural networks ; Q factors ; Q-factor ; Quality ; Training ; Transform coding</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2020-04, Vol.30 (4), p.1121-1135</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-409d05cddf3ae90fde18f68f7626124b2b6aadc66cd1dfb889f1e2f0427f01823</citedby><cites>FETCH-LOGICAL-c361t-409d05cddf3ae90fde18f68f7626124b2b6aadc66cd1dfb889f1e2f0427f01823</cites><orcidid>0000-0002-6816-4381 ; 0000-0001-5297-4649 ; 0000-0002-8367-9375 ; 0000-0001-8023-8278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8653951$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8653951$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kim, Yoonsik</creatorcontrib><creatorcontrib>Soh, Jae Woong</creatorcontrib><creatorcontrib>Park, Jaewoo</creatorcontrib><creatorcontrib>Ahn, Byeongyong</creatorcontrib><creatorcontrib>Lee, Hyun-Seung</creatorcontrib><creatorcontrib>Moon, Young-Su</creatorcontrib><creatorcontrib>Cho, Nam Ik</creatorcontrib><title>A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>This paper presents methods based on convolutional neural networks (CNNs) for removing compression artifacts. We modify the Inception module for the image restoration problem and use it as a building block for constructing blind and non-blind artifact removal networks. It is known that a CNN trained in a non-blind scenario (known compression quality factor) performs better than the one trained in a blind scenario (unknown factor), and our network is not an exception. However, the blind system is more practical because the compression quality factor is not always available or does not reflect the actual quality when the image is a transcoded or requantized image. Hence, in this paper, we also propose a pseudo-blind system that estimates the quality factor for a given compressed image and then applies a network that is trained with a similar quality factor. For this purpose, we propose a CNN that estimates the compression quality factor and prepare several non-blind artifact removal networks that are trained for some specific compression quality factors. We train the networks and conduct experiments on widely used compression standards, such as JPEG, MPEG-2, H.264, and HEVC. In addition, we conduct experiments for dynamically changing and transcoded videos to demonstrate the effectiveness of the quality estimation method. The experimental results show that the proposed pseudo-blind network performs better than the blind one for the various cases stated above and requires fewer computations.</description><subject>Artificial neural networks</subject><subject>compression artifacts</subject><subject>compression quality factor</subject><subject>Convolutional neural network</subject><subject>Decoding</subject><subject>Image coding</subject><subject>Image compression</subject><subject>Image quality</subject><subject>Image restoration</subject><subject>inception</subject><subject>Kernel</subject><subject>Neural networks</subject><subject>Q factors</subject><subject>Q-factor</subject><subject>Quality</subject><subject>Training</subject><subject>Transform coding</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKd_QG8KXnfmpE2aXM7iFwwVnbsNWT6ws1tmkir-e9tNvDkf8D6Hw4PQOeAJABZX8_p1MZ8QDGJCRF9BHKARUMpzQjA97GdMIecE6DE6iXGFMZS8rEZoMc2eo-2Mz6_bZmOy2m--fNulxm9Umz3aLuxa-vbhI3M-ZOndZi_WdHqIZN71xHobbIzDOg2pcUqneIqOnGqjPfvrY_R2ezOv7_PZ091DPZ3lumCQ8hILg6k2xhXKCuyMBe4YdxUjDEi5JEumlNGMaQPGLTkXDixxuCSVw8BJMUaX-7vb4D87G5Nc-S70r0dJCl5hJigbUmSf0sHHGKyT29CsVfiRgOXgT-78ycGf_PPXQxd7qLHW_gOc0UJQKH4BWfNs_A</recordid><startdate>20200401</startdate><enddate>20200401</enddate><creator>Kim, Yoonsik</creator><creator>Soh, Jae Woong</creator><creator>Park, Jaewoo</creator><creator>Ahn, Byeongyong</creator><creator>Lee, Hyun-Seung</creator><creator>Moon, Young-Su</creator><creator>Cho, Nam Ik</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6816-4381</orcidid><orcidid>https://orcid.org/0000-0001-5297-4649</orcidid><orcidid>https://orcid.org/0000-0002-8367-9375</orcidid><orcidid>https://orcid.org/0000-0001-8023-8278</orcidid></search><sort><creationdate>20200401</creationdate><title>A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts</title><author>Kim, Yoonsik ; Soh, Jae Woong ; Park, Jaewoo ; Ahn, Byeongyong ; Lee, Hyun-Seung ; Moon, Young-Su ; Cho, Nam Ik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-409d05cddf3ae90fde18f68f7626124b2b6aadc66cd1dfb889f1e2f0427f01823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>compression artifacts</topic><topic>compression quality factor</topic><topic>Convolutional neural network</topic><topic>Decoding</topic><topic>Image coding</topic><topic>Image compression</topic><topic>Image quality</topic><topic>Image restoration</topic><topic>inception</topic><topic>Kernel</topic><topic>Neural networks</topic><topic>Q factors</topic><topic>Q-factor</topic><topic>Quality</topic><topic>Training</topic><topic>Transform coding</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kim, Yoonsik</creatorcontrib><creatorcontrib>Soh, Jae Woong</creatorcontrib><creatorcontrib>Park, Jaewoo</creatorcontrib><creatorcontrib>Ahn, Byeongyong</creatorcontrib><creatorcontrib>Lee, Hyun-Seung</creatorcontrib><creatorcontrib>Moon, Young-Su</creatorcontrib><creatorcontrib>Cho, Nam Ik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kim, Yoonsik</au><au>Soh, Jae Woong</au><au>Park, Jaewoo</au><au>Ahn, Byeongyong</au><au>Lee, Hyun-Seung</au><au>Moon, Young-Su</au><au>Cho, Nam Ik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2020-04-01</date><risdate>2020</risdate><volume>30</volume><issue>4</issue><spage>1121</spage><epage>1135</epage><pages>1121-1135</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>This paper presents methods based on convolutional neural networks (CNNs) for removing compression artifacts. We modify the Inception module for the image restoration problem and use it as a building block for constructing blind and non-blind artifact removal networks. It is known that a CNN trained in a non-blind scenario (known compression quality factor) performs better than the one trained in a blind scenario (unknown factor), and our network is not an exception. However, the blind system is more practical because the compression quality factor is not always available or does not reflect the actual quality when the image is a transcoded or requantized image. Hence, in this paper, we also propose a pseudo-blind system that estimates the quality factor for a given compressed image and then applies a network that is trained with a similar quality factor. For this purpose, we propose a CNN that estimates the compression quality factor and prepare several non-blind artifact removal networks that are trained for some specific compression quality factors. We train the networks and conduct experiments on widely used compression standards, such as JPEG, MPEG-2, H.264, and HEVC. In addition, we conduct experiments for dynamically changing and transcoded videos to demonstrate the effectiveness of the quality estimation method. The experimental results show that the proposed pseudo-blind network performs better than the blind one for the various cases stated above and requires fewer computations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2019.2901919</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-6816-4381</orcidid><orcidid>https://orcid.org/0000-0001-5297-4649</orcidid><orcidid>https://orcid.org/0000-0002-8367-9375</orcidid><orcidid>https://orcid.org/0000-0001-8023-8278</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2020-04, Vol.30 (4), p.1121-1135 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_8653951 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks compression artifacts compression quality factor Convolutional neural network Decoding Image coding Image compression Image quality Image restoration inception Kernel Neural networks Q factors Q-factor Quality Training Transform coding |
title | A Pseudo-Blind Convolutional Neural Network for the Reduction of Compression Artifacts |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T03%3A46%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Pseudo-Blind%20Convolutional%20Neural%20Network%20for%20the%20Reduction%20of%20Compression%20Artifacts&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Kim,%20Yoonsik&rft.date=2020-04-01&rft.volume=30&rft.issue=4&rft.spage=1121&rft.epage=1135&rft.pages=1121-1135&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2019.2901919&rft_dat=%3Cproquest_RIE%3E2387069562%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2387069562&rft_id=info:pmid/&rft_ieee_id=8653951&rfr_iscdi=true |