RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge
Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods h...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on medical imaging 2019-08, Vol.38 (8), p.1858-1874 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1874 |
---|---|
container_issue | 8 |
container_start_page | 1858 |
container_title | IEEE transactions on medical imaging |
container_volume | 38 |
creator | Bogunovic, Hrvoje Venhuizen, Freerk Klimscha, Sophie Apostolopoulos, Stefanos Bab-Hadiashar, Alireza Bagci, Ulas Beg, Mirza Faisal Bekalo, Loza Chen, Qiang Ciller, Carlos Gopinath, Karthik Gostar, Amirali K. Jeon, Kiwan Ji, Zexuan Kang, Sung Ho Koozekanani, Dara D. Lu, Donghuan Morley, Dustin Parhi, Keshab K. Park, Hyoung Suk Rashno, Abdolreza Sarunic, Marinko Shaikh, Saad Sivaswamy, Jayanthi Tennakoon, Ruwan Yadav, Shivin De Zanet, Sandro Waldstein, Sebastian M. Gerendas, Bianca S. Klaver, Caroline Sanchez, Clara I. Schmidt-Erfurth, Ursula |
description | Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance. |
doi_str_mv | 10.1109/TMI.2019.2901398 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8653407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8653407</ieee_id><sourcerecordid>2188212333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-7d2da611d7e64a24406a036832df2d1c5c3109d685ca556234accb45f2f31b593</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRtFbvgiABL15Sd2cf3XjT-CooxZqCt7DdndjUNNE8Dv73bm3twbkMzHwz8PsIOWF0wBiNLpPn0QAoiwYQUcYjvUN6TEodghRvu6RHYahDShUckMOmWVDKhKTRPjngVHMJTPTIy-QuGU_jx6sgmWMwwTYvTRGM4yS4L7rcBbfYom3zqgxM6YJXfF9i2ZrfwQ2Wdr409cfvKp6bosDyHY_IXmaKBo83vU-m93dJ_Bg-jR9G8fVTaAXjbTh04IxizA1RCQNCUGUoV5qDy8AxKy33CZ3S0hopFXBhrJ0JmUHG2UxGvE8u1n8_6-qrw6ZNl3ljsShMiVXXpMC0BgbcV5-c_0MXVVf7oJ4CpQUHrbWn6JqyddU0NWbpZ537fN8po-lKd-p1pyvd6Ua3PznbPO5mS3Tbgz-_HjhdAzkibtdaSS7okP8ASZGAQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268432888</pqid></control><display><type>article</type><title>RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge</title><source>IEEE Electronic Library (IEL)</source><creator>Bogunovic, Hrvoje ; Venhuizen, Freerk ; Klimscha, Sophie ; Apostolopoulos, Stefanos ; Bab-Hadiashar, Alireza ; Bagci, Ulas ; Beg, Mirza Faisal ; Bekalo, Loza ; Chen, Qiang ; Ciller, Carlos ; Gopinath, Karthik ; Gostar, Amirali K. ; Jeon, Kiwan ; Ji, Zexuan ; Kang, Sung Ho ; Koozekanani, Dara D. ; Lu, Donghuan ; Morley, Dustin ; Parhi, Keshab K. ; Park, Hyoung Suk ; Rashno, Abdolreza ; Sarunic, Marinko ; Shaikh, Saad ; Sivaswamy, Jayanthi ; Tennakoon, Ruwan ; Yadav, Shivin ; De Zanet, Sandro ; Waldstein, Sebastian M. ; Gerendas, Bianca S. ; Klaver, Caroline ; Sanchez, Clara I. ; Schmidt-Erfurth, Ursula</creator><creatorcontrib>Bogunovic, Hrvoje ; Venhuizen, Freerk ; Klimscha, Sophie ; Apostolopoulos, Stefanos ; Bab-Hadiashar, Alireza ; Bagci, Ulas ; Beg, Mirza Faisal ; Bekalo, Loza ; Chen, Qiang ; Ciller, Carlos ; Gopinath, Karthik ; Gostar, Amirali K. ; Jeon, Kiwan ; Ji, Zexuan ; Kang, Sung Ho ; Koozekanani, Dara D. ; Lu, Donghuan ; Morley, Dustin ; Parhi, Keshab K. ; Park, Hyoung Suk ; Rashno, Abdolreza ; Sarunic, Marinko ; Shaikh, Saad ; Sivaswamy, Jayanthi ; Tennakoon, Ruwan ; Yadav, Shivin ; De Zanet, Sandro ; Waldstein, Sebastian M. ; Gerendas, Bianca S. ; Klaver, Caroline ; Sanchez, Clara I. ; Schmidt-Erfurth, Ursula</creatorcontrib><description>Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2901398</identifier><identifier>PMID: 30835214</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Automation ; Benchmark testing ; Benchmarks ; Biomedical imaging ; Databases, Factual ; Diseases ; Evaluation ; Fluids ; Humans ; Image acquisition ; Image analysis ; image classification ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Machine learning ; Medical imaging ; Optical Coherence Tomography ; Retina ; Retina - diagnostic imaging ; Retinal Diseases - diagnostic imaging ; Tomography, Optical Coherence - methods</subject><ispartof>IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1858-1874</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-7d2da611d7e64a24406a036832df2d1c5c3109d685ca556234accb45f2f31b593</citedby><cites>FETCH-LOGICAL-c413t-7d2da611d7e64a24406a036832df2d1c5c3109d685ca556234accb45f2f31b593</cites><orcidid>0000-0003-2899-6279 ; 0000-0002-9168-0894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8653407$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8653407$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30835214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogunovic, Hrvoje</creatorcontrib><creatorcontrib>Venhuizen, Freerk</creatorcontrib><creatorcontrib>Klimscha, Sophie</creatorcontrib><creatorcontrib>Apostolopoulos, Stefanos</creatorcontrib><creatorcontrib>Bab-Hadiashar, Alireza</creatorcontrib><creatorcontrib>Bagci, Ulas</creatorcontrib><creatorcontrib>Beg, Mirza Faisal</creatorcontrib><creatorcontrib>Bekalo, Loza</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ciller, Carlos</creatorcontrib><creatorcontrib>Gopinath, Karthik</creatorcontrib><creatorcontrib>Gostar, Amirali K.</creatorcontrib><creatorcontrib>Jeon, Kiwan</creatorcontrib><creatorcontrib>Ji, Zexuan</creatorcontrib><creatorcontrib>Kang, Sung Ho</creatorcontrib><creatorcontrib>Koozekanani, Dara D.</creatorcontrib><creatorcontrib>Lu, Donghuan</creatorcontrib><creatorcontrib>Morley, Dustin</creatorcontrib><creatorcontrib>Parhi, Keshab K.</creatorcontrib><creatorcontrib>Park, Hyoung Suk</creatorcontrib><creatorcontrib>Rashno, Abdolreza</creatorcontrib><creatorcontrib>Sarunic, Marinko</creatorcontrib><creatorcontrib>Shaikh, Saad</creatorcontrib><creatorcontrib>Sivaswamy, Jayanthi</creatorcontrib><creatorcontrib>Tennakoon, Ruwan</creatorcontrib><creatorcontrib>Yadav, Shivin</creatorcontrib><creatorcontrib>De Zanet, Sandro</creatorcontrib><creatorcontrib>Waldstein, Sebastian M.</creatorcontrib><creatorcontrib>Gerendas, Bianca S.</creatorcontrib><creatorcontrib>Klaver, Caroline</creatorcontrib><creatorcontrib>Sanchez, Clara I.</creatorcontrib><creatorcontrib>Schmidt-Erfurth, Ursula</creatorcontrib><title>RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Biomedical imaging</subject><subject>Databases, Factual</subject><subject>Diseases</subject><subject>Evaluation</subject><subject>Fluids</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image analysis</subject><subject>image classification</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Optical Coherence Tomography</subject><subject>Retina</subject><subject>Retina - diagnostic imaging</subject><subject>Retinal Diseases - diagnostic imaging</subject><subject>Tomography, Optical Coherence - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkMtLw0AQhxdRtFbvgiABL15Sd2cf3XjT-CooxZqCt7DdndjUNNE8Dv73bm3twbkMzHwz8PsIOWF0wBiNLpPn0QAoiwYQUcYjvUN6TEodghRvu6RHYahDShUckMOmWVDKhKTRPjngVHMJTPTIy-QuGU_jx6sgmWMwwTYvTRGM4yS4L7rcBbfYom3zqgxM6YJXfF9i2ZrfwQ2Wdr409cfvKp6bosDyHY_IXmaKBo83vU-m93dJ_Bg-jR9G8fVTaAXjbTh04IxizA1RCQNCUGUoV5qDy8AxKy33CZ3S0hopFXBhrJ0JmUHG2UxGvE8u1n8_6-qrw6ZNl3ljsShMiVXXpMC0BgbcV5-c_0MXVVf7oJ4CpQUHrbWn6JqyddU0NWbpZ537fN8po-lKd-p1pyvd6Ua3PznbPO5mS3Tbgz-_HjhdAzkibtdaSS7okP8ASZGAQA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Bogunovic, Hrvoje</creator><creator>Venhuizen, Freerk</creator><creator>Klimscha, Sophie</creator><creator>Apostolopoulos, Stefanos</creator><creator>Bab-Hadiashar, Alireza</creator><creator>Bagci, Ulas</creator><creator>Beg, Mirza Faisal</creator><creator>Bekalo, Loza</creator><creator>Chen, Qiang</creator><creator>Ciller, Carlos</creator><creator>Gopinath, Karthik</creator><creator>Gostar, Amirali K.</creator><creator>Jeon, Kiwan</creator><creator>Ji, Zexuan</creator><creator>Kang, Sung Ho</creator><creator>Koozekanani, Dara D.</creator><creator>Lu, Donghuan</creator><creator>Morley, Dustin</creator><creator>Parhi, Keshab K.</creator><creator>Park, Hyoung Suk</creator><creator>Rashno, Abdolreza</creator><creator>Sarunic, Marinko</creator><creator>Shaikh, Saad</creator><creator>Sivaswamy, Jayanthi</creator><creator>Tennakoon, Ruwan</creator><creator>Yadav, Shivin</creator><creator>De Zanet, Sandro</creator><creator>Waldstein, Sebastian M.</creator><creator>Gerendas, Bianca S.</creator><creator>Klaver, Caroline</creator><creator>Sanchez, Clara I.</creator><creator>Schmidt-Erfurth, Ursula</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2899-6279</orcidid><orcidid>https://orcid.org/0000-0002-9168-0894</orcidid></search><sort><creationdate>20190801</creationdate><title>RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge</title><author>Bogunovic, Hrvoje ; Venhuizen, Freerk ; Klimscha, Sophie ; Apostolopoulos, Stefanos ; Bab-Hadiashar, Alireza ; Bagci, Ulas ; Beg, Mirza Faisal ; Bekalo, Loza ; Chen, Qiang ; Ciller, Carlos ; Gopinath, Karthik ; Gostar, Amirali K. ; Jeon, Kiwan ; Ji, Zexuan ; Kang, Sung Ho ; Koozekanani, Dara D. ; Lu, Donghuan ; Morley, Dustin ; Parhi, Keshab K. ; Park, Hyoung Suk ; Rashno, Abdolreza ; Sarunic, Marinko ; Shaikh, Saad ; Sivaswamy, Jayanthi ; Tennakoon, Ruwan ; Yadav, Shivin ; De Zanet, Sandro ; Waldstein, Sebastian M. ; Gerendas, Bianca S. ; Klaver, Caroline ; Sanchez, Clara I. ; Schmidt-Erfurth, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-7d2da611d7e64a24406a036832df2d1c5c3109d685ca556234accb45f2f31b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Biomedical imaging</topic><topic>Databases, Factual</topic><topic>Diseases</topic><topic>Evaluation</topic><topic>Fluids</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image analysis</topic><topic>image classification</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Optical Coherence Tomography</topic><topic>Retina</topic><topic>Retina - diagnostic imaging</topic><topic>Retinal Diseases - diagnostic imaging</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Bogunovic, Hrvoje</creatorcontrib><creatorcontrib>Venhuizen, Freerk</creatorcontrib><creatorcontrib>Klimscha, Sophie</creatorcontrib><creatorcontrib>Apostolopoulos, Stefanos</creatorcontrib><creatorcontrib>Bab-Hadiashar, Alireza</creatorcontrib><creatorcontrib>Bagci, Ulas</creatorcontrib><creatorcontrib>Beg, Mirza Faisal</creatorcontrib><creatorcontrib>Bekalo, Loza</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ciller, Carlos</creatorcontrib><creatorcontrib>Gopinath, Karthik</creatorcontrib><creatorcontrib>Gostar, Amirali K.</creatorcontrib><creatorcontrib>Jeon, Kiwan</creatorcontrib><creatorcontrib>Ji, Zexuan</creatorcontrib><creatorcontrib>Kang, Sung Ho</creatorcontrib><creatorcontrib>Koozekanani, Dara D.</creatorcontrib><creatorcontrib>Lu, Donghuan</creatorcontrib><creatorcontrib>Morley, Dustin</creatorcontrib><creatorcontrib>Parhi, Keshab K.</creatorcontrib><creatorcontrib>Park, Hyoung Suk</creatorcontrib><creatorcontrib>Rashno, Abdolreza</creatorcontrib><creatorcontrib>Sarunic, Marinko</creatorcontrib><creatorcontrib>Shaikh, Saad</creatorcontrib><creatorcontrib>Sivaswamy, Jayanthi</creatorcontrib><creatorcontrib>Tennakoon, Ruwan</creatorcontrib><creatorcontrib>Yadav, Shivin</creatorcontrib><creatorcontrib>De Zanet, Sandro</creatorcontrib><creatorcontrib>Waldstein, Sebastian M.</creatorcontrib><creatorcontrib>Gerendas, Bianca S.</creatorcontrib><creatorcontrib>Klaver, Caroline</creatorcontrib><creatorcontrib>Sanchez, Clara I.</creatorcontrib><creatorcontrib>Schmidt-Erfurth, Ursula</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bogunovic, Hrvoje</au><au>Venhuizen, Freerk</au><au>Klimscha, Sophie</au><au>Apostolopoulos, Stefanos</au><au>Bab-Hadiashar, Alireza</au><au>Bagci, Ulas</au><au>Beg, Mirza Faisal</au><au>Bekalo, Loza</au><au>Chen, Qiang</au><au>Ciller, Carlos</au><au>Gopinath, Karthik</au><au>Gostar, Amirali K.</au><au>Jeon, Kiwan</au><au>Ji, Zexuan</au><au>Kang, Sung Ho</au><au>Koozekanani, Dara D.</au><au>Lu, Donghuan</au><au>Morley, Dustin</au><au>Parhi, Keshab K.</au><au>Park, Hyoung Suk</au><au>Rashno, Abdolreza</au><au>Sarunic, Marinko</au><au>Shaikh, Saad</au><au>Sivaswamy, Jayanthi</au><au>Tennakoon, Ruwan</au><au>Yadav, Shivin</au><au>De Zanet, Sandro</au><au>Waldstein, Sebastian M.</au><au>Gerendas, Bianca S.</au><au>Klaver, Caroline</au><au>Sanchez, Clara I.</au><au>Schmidt-Erfurth, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>38</volume><issue>8</issue><spage>1858</spage><epage>1874</epage><pages>1858-1874</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30835214</pmid><doi>10.1109/TMI.2019.2901398</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2899-6279</orcidid><orcidid>https://orcid.org/0000-0002-9168-0894</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0278-0062 |
ispartof | IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1858-1874 |
issn | 0278-0062 1558-254X |
language | eng |
recordid | cdi_ieee_primary_8653407 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automation Benchmark testing Benchmarks Biomedical imaging Databases, Factual Diseases Evaluation Fluids Humans Image acquisition Image analysis image classification Image Interpretation, Computer-Assisted - methods Image processing Image segmentation Machine learning Medical imaging Optical Coherence Tomography Retina Retina - diagnostic imaging Retinal Diseases - diagnostic imaging Tomography, Optical Coherence - methods |
title | RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETOUCH:%20The%20Retinal%20OCT%20Fluid%20Detection%20and%20Segmentation%20Benchmark%20and%20Challenge&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Bogunovic,%20Hrvoje&rft.date=2019-08-01&rft.volume=38&rft.issue=8&rft.spage=1858&rft.epage=1874&rft.pages=1858-1874&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2901398&rft_dat=%3Cproquest_RIE%3E2188212333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268432888&rft_id=info:pmid/30835214&rft_ieee_id=8653407&rfr_iscdi=true |