RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge

Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on medical imaging 2019-08, Vol.38 (8), p.1858-1874
Hauptverfasser: Bogunovic, Hrvoje, Venhuizen, Freerk, Klimscha, Sophie, Apostolopoulos, Stefanos, Bab-Hadiashar, Alireza, Bagci, Ulas, Beg, Mirza Faisal, Bekalo, Loza, Chen, Qiang, Ciller, Carlos, Gopinath, Karthik, Gostar, Amirali K., Jeon, Kiwan, Ji, Zexuan, Kang, Sung Ho, Koozekanani, Dara D., Lu, Donghuan, Morley, Dustin, Parhi, Keshab K., Park, Hyoung Suk, Rashno, Abdolreza, Sarunic, Marinko, Shaikh, Saad, Sivaswamy, Jayanthi, Tennakoon, Ruwan, Yadav, Shivin, De Zanet, Sandro, Waldstein, Sebastian M., Gerendas, Bianca S., Klaver, Caroline, Sanchez, Clara I., Schmidt-Erfurth, Ursula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1874
container_issue 8
container_start_page 1858
container_title IEEE transactions on medical imaging
container_volume 38
creator Bogunovic, Hrvoje
Venhuizen, Freerk
Klimscha, Sophie
Apostolopoulos, Stefanos
Bab-Hadiashar, Alireza
Bagci, Ulas
Beg, Mirza Faisal
Bekalo, Loza
Chen, Qiang
Ciller, Carlos
Gopinath, Karthik
Gostar, Amirali K.
Jeon, Kiwan
Ji, Zexuan
Kang, Sung Ho
Koozekanani, Dara D.
Lu, Donghuan
Morley, Dustin
Parhi, Keshab K.
Park, Hyoung Suk
Rashno, Abdolreza
Sarunic, Marinko
Shaikh, Saad
Sivaswamy, Jayanthi
Tennakoon, Ruwan
Yadav, Shivin
De Zanet, Sandro
Waldstein, Sebastian M.
Gerendas, Bianca S.
Klaver, Caroline
Sanchez, Clara I.
Schmidt-Erfurth, Ursula
description Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance.
doi_str_mv 10.1109/TMI.2019.2901398
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8653407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8653407</ieee_id><sourcerecordid>2188212333</sourcerecordid><originalsourceid>FETCH-LOGICAL-c413t-7d2da611d7e64a24406a036832df2d1c5c3109d685ca556234accb45f2f31b593</originalsourceid><addsrcrecordid>eNpdkMtLw0AQhxdRtFbvgiABL15Sd2cf3XjT-CooxZqCt7DdndjUNNE8Dv73bm3twbkMzHwz8PsIOWF0wBiNLpPn0QAoiwYQUcYjvUN6TEodghRvu6RHYahDShUckMOmWVDKhKTRPjngVHMJTPTIy-QuGU_jx6sgmWMwwTYvTRGM4yS4L7rcBbfYom3zqgxM6YJXfF9i2ZrfwQ2Wdr409cfvKp6bosDyHY_IXmaKBo83vU-m93dJ_Bg-jR9G8fVTaAXjbTh04IxizA1RCQNCUGUoV5qDy8AxKy33CZ3S0hopFXBhrJ0JmUHG2UxGvE8u1n8_6-qrw6ZNl3ljsShMiVXXpMC0BgbcV5-c_0MXVVf7oJ4CpQUHrbWn6JqyddU0NWbpZ537fN8po-lKd-p1pyvd6Ua3PznbPO5mS3Tbgz-_HjhdAzkibtdaSS7okP8ASZGAQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2268432888</pqid></control><display><type>article</type><title>RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge</title><source>IEEE Electronic Library (IEL)</source><creator>Bogunovic, Hrvoje ; Venhuizen, Freerk ; Klimscha, Sophie ; Apostolopoulos, Stefanos ; Bab-Hadiashar, Alireza ; Bagci, Ulas ; Beg, Mirza Faisal ; Bekalo, Loza ; Chen, Qiang ; Ciller, Carlos ; Gopinath, Karthik ; Gostar, Amirali K. ; Jeon, Kiwan ; Ji, Zexuan ; Kang, Sung Ho ; Koozekanani, Dara D. ; Lu, Donghuan ; Morley, Dustin ; Parhi, Keshab K. ; Park, Hyoung Suk ; Rashno, Abdolreza ; Sarunic, Marinko ; Shaikh, Saad ; Sivaswamy, Jayanthi ; Tennakoon, Ruwan ; Yadav, Shivin ; De Zanet, Sandro ; Waldstein, Sebastian M. ; Gerendas, Bianca S. ; Klaver, Caroline ; Sanchez, Clara I. ; Schmidt-Erfurth, Ursula</creator><creatorcontrib>Bogunovic, Hrvoje ; Venhuizen, Freerk ; Klimscha, Sophie ; Apostolopoulos, Stefanos ; Bab-Hadiashar, Alireza ; Bagci, Ulas ; Beg, Mirza Faisal ; Bekalo, Loza ; Chen, Qiang ; Ciller, Carlos ; Gopinath, Karthik ; Gostar, Amirali K. ; Jeon, Kiwan ; Ji, Zexuan ; Kang, Sung Ho ; Koozekanani, Dara D. ; Lu, Donghuan ; Morley, Dustin ; Parhi, Keshab K. ; Park, Hyoung Suk ; Rashno, Abdolreza ; Sarunic, Marinko ; Shaikh, Saad ; Sivaswamy, Jayanthi ; Tennakoon, Ruwan ; Yadav, Shivin ; De Zanet, Sandro ; Waldstein, Sebastian M. ; Gerendas, Bianca S. ; Klaver, Caroline ; Sanchez, Clara I. ; Schmidt-Erfurth, Ursula</creatorcontrib><description>Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance.</description><identifier>ISSN: 0278-0062</identifier><identifier>EISSN: 1558-254X</identifier><identifier>DOI: 10.1109/TMI.2019.2901398</identifier><identifier>PMID: 30835214</identifier><identifier>CODEN: ITMID4</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Automation ; Benchmark testing ; Benchmarks ; Biomedical imaging ; Databases, Factual ; Diseases ; Evaluation ; Fluids ; Humans ; Image acquisition ; Image analysis ; image classification ; Image Interpretation, Computer-Assisted - methods ; Image processing ; Image segmentation ; Machine learning ; Medical imaging ; Optical Coherence Tomography ; Retina ; Retina - diagnostic imaging ; Retinal Diseases - diagnostic imaging ; Tomography, Optical Coherence - methods</subject><ispartof>IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1858-1874</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c413t-7d2da611d7e64a24406a036832df2d1c5c3109d685ca556234accb45f2f31b593</citedby><cites>FETCH-LOGICAL-c413t-7d2da611d7e64a24406a036832df2d1c5c3109d685ca556234accb45f2f31b593</cites><orcidid>0000-0003-2899-6279 ; 0000-0002-9168-0894</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8653407$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8653407$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30835214$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bogunovic, Hrvoje</creatorcontrib><creatorcontrib>Venhuizen, Freerk</creatorcontrib><creatorcontrib>Klimscha, Sophie</creatorcontrib><creatorcontrib>Apostolopoulos, Stefanos</creatorcontrib><creatorcontrib>Bab-Hadiashar, Alireza</creatorcontrib><creatorcontrib>Bagci, Ulas</creatorcontrib><creatorcontrib>Beg, Mirza Faisal</creatorcontrib><creatorcontrib>Bekalo, Loza</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ciller, Carlos</creatorcontrib><creatorcontrib>Gopinath, Karthik</creatorcontrib><creatorcontrib>Gostar, Amirali K.</creatorcontrib><creatorcontrib>Jeon, Kiwan</creatorcontrib><creatorcontrib>Ji, Zexuan</creatorcontrib><creatorcontrib>Kang, Sung Ho</creatorcontrib><creatorcontrib>Koozekanani, Dara D.</creatorcontrib><creatorcontrib>Lu, Donghuan</creatorcontrib><creatorcontrib>Morley, Dustin</creatorcontrib><creatorcontrib>Parhi, Keshab K.</creatorcontrib><creatorcontrib>Park, Hyoung Suk</creatorcontrib><creatorcontrib>Rashno, Abdolreza</creatorcontrib><creatorcontrib>Sarunic, Marinko</creatorcontrib><creatorcontrib>Shaikh, Saad</creatorcontrib><creatorcontrib>Sivaswamy, Jayanthi</creatorcontrib><creatorcontrib>Tennakoon, Ruwan</creatorcontrib><creatorcontrib>Yadav, Shivin</creatorcontrib><creatorcontrib>De Zanet, Sandro</creatorcontrib><creatorcontrib>Waldstein, Sebastian M.</creatorcontrib><creatorcontrib>Gerendas, Bianca S.</creatorcontrib><creatorcontrib>Klaver, Caroline</creatorcontrib><creatorcontrib>Sanchez, Clara I.</creatorcontrib><creatorcontrib>Schmidt-Erfurth, Ursula</creatorcontrib><title>RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge</title><title>IEEE transactions on medical imaging</title><addtitle>TMI</addtitle><addtitle>IEEE Trans Med Imaging</addtitle><description>Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Benchmark testing</subject><subject>Benchmarks</subject><subject>Biomedical imaging</subject><subject>Databases, Factual</subject><subject>Diseases</subject><subject>Evaluation</subject><subject>Fluids</subject><subject>Humans</subject><subject>Image acquisition</subject><subject>Image analysis</subject><subject>image classification</subject><subject>Image Interpretation, Computer-Assisted - methods</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Medical imaging</subject><subject>Optical Coherence Tomography</subject><subject>Retina</subject><subject>Retina - diagnostic imaging</subject><subject>Retinal Diseases - diagnostic imaging</subject><subject>Tomography, Optical Coherence - methods</subject><issn>0278-0062</issn><issn>1558-254X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>EIF</sourceid><recordid>eNpdkMtLw0AQhxdRtFbvgiABL15Sd2cf3XjT-CooxZqCt7DdndjUNNE8Dv73bm3twbkMzHwz8PsIOWF0wBiNLpPn0QAoiwYQUcYjvUN6TEodghRvu6RHYahDShUckMOmWVDKhKTRPjngVHMJTPTIy-QuGU_jx6sgmWMwwTYvTRGM4yS4L7rcBbfYom3zqgxM6YJXfF9i2ZrfwQ2Wdr409cfvKp6bosDyHY_IXmaKBo83vU-m93dJ_Bg-jR9G8fVTaAXjbTh04IxizA1RCQNCUGUoV5qDy8AxKy33CZ3S0hopFXBhrJ0JmUHG2UxGvE8u1n8_6-qrw6ZNl3ljsShMiVXXpMC0BgbcV5-c_0MXVVf7oJ4CpQUHrbWn6JqyddU0NWbpZ537fN8po-lKd-p1pyvd6Ua3PznbPO5mS3Tbgz-_HjhdAzkibtdaSS7okP8ASZGAQA</recordid><startdate>20190801</startdate><enddate>20190801</enddate><creator>Bogunovic, Hrvoje</creator><creator>Venhuizen, Freerk</creator><creator>Klimscha, Sophie</creator><creator>Apostolopoulos, Stefanos</creator><creator>Bab-Hadiashar, Alireza</creator><creator>Bagci, Ulas</creator><creator>Beg, Mirza Faisal</creator><creator>Bekalo, Loza</creator><creator>Chen, Qiang</creator><creator>Ciller, Carlos</creator><creator>Gopinath, Karthik</creator><creator>Gostar, Amirali K.</creator><creator>Jeon, Kiwan</creator><creator>Ji, Zexuan</creator><creator>Kang, Sung Ho</creator><creator>Koozekanani, Dara D.</creator><creator>Lu, Donghuan</creator><creator>Morley, Dustin</creator><creator>Parhi, Keshab K.</creator><creator>Park, Hyoung Suk</creator><creator>Rashno, Abdolreza</creator><creator>Sarunic, Marinko</creator><creator>Shaikh, Saad</creator><creator>Sivaswamy, Jayanthi</creator><creator>Tennakoon, Ruwan</creator><creator>Yadav, Shivin</creator><creator>De Zanet, Sandro</creator><creator>Waldstein, Sebastian M.</creator><creator>Gerendas, Bianca S.</creator><creator>Klaver, Caroline</creator><creator>Sanchez, Clara I.</creator><creator>Schmidt-Erfurth, Ursula</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>NAPCQ</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-2899-6279</orcidid><orcidid>https://orcid.org/0000-0002-9168-0894</orcidid></search><sort><creationdate>20190801</creationdate><title>RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge</title><author>Bogunovic, Hrvoje ; Venhuizen, Freerk ; Klimscha, Sophie ; Apostolopoulos, Stefanos ; Bab-Hadiashar, Alireza ; Bagci, Ulas ; Beg, Mirza Faisal ; Bekalo, Loza ; Chen, Qiang ; Ciller, Carlos ; Gopinath, Karthik ; Gostar, Amirali K. ; Jeon, Kiwan ; Ji, Zexuan ; Kang, Sung Ho ; Koozekanani, Dara D. ; Lu, Donghuan ; Morley, Dustin ; Parhi, Keshab K. ; Park, Hyoung Suk ; Rashno, Abdolreza ; Sarunic, Marinko ; Shaikh, Saad ; Sivaswamy, Jayanthi ; Tennakoon, Ruwan ; Yadav, Shivin ; De Zanet, Sandro ; Waldstein, Sebastian M. ; Gerendas, Bianca S. ; Klaver, Caroline ; Sanchez, Clara I. ; Schmidt-Erfurth, Ursula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c413t-7d2da611d7e64a24406a036832df2d1c5c3109d685ca556234accb45f2f31b593</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Benchmark testing</topic><topic>Benchmarks</topic><topic>Biomedical imaging</topic><topic>Databases, Factual</topic><topic>Diseases</topic><topic>Evaluation</topic><topic>Fluids</topic><topic>Humans</topic><topic>Image acquisition</topic><topic>Image analysis</topic><topic>image classification</topic><topic>Image Interpretation, Computer-Assisted - methods</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Medical imaging</topic><topic>Optical Coherence Tomography</topic><topic>Retina</topic><topic>Retina - diagnostic imaging</topic><topic>Retinal Diseases - diagnostic imaging</topic><topic>Tomography, Optical Coherence - methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Bogunovic, Hrvoje</creatorcontrib><creatorcontrib>Venhuizen, Freerk</creatorcontrib><creatorcontrib>Klimscha, Sophie</creatorcontrib><creatorcontrib>Apostolopoulos, Stefanos</creatorcontrib><creatorcontrib>Bab-Hadiashar, Alireza</creatorcontrib><creatorcontrib>Bagci, Ulas</creatorcontrib><creatorcontrib>Beg, Mirza Faisal</creatorcontrib><creatorcontrib>Bekalo, Loza</creatorcontrib><creatorcontrib>Chen, Qiang</creatorcontrib><creatorcontrib>Ciller, Carlos</creatorcontrib><creatorcontrib>Gopinath, Karthik</creatorcontrib><creatorcontrib>Gostar, Amirali K.</creatorcontrib><creatorcontrib>Jeon, Kiwan</creatorcontrib><creatorcontrib>Ji, Zexuan</creatorcontrib><creatorcontrib>Kang, Sung Ho</creatorcontrib><creatorcontrib>Koozekanani, Dara D.</creatorcontrib><creatorcontrib>Lu, Donghuan</creatorcontrib><creatorcontrib>Morley, Dustin</creatorcontrib><creatorcontrib>Parhi, Keshab K.</creatorcontrib><creatorcontrib>Park, Hyoung Suk</creatorcontrib><creatorcontrib>Rashno, Abdolreza</creatorcontrib><creatorcontrib>Sarunic, Marinko</creatorcontrib><creatorcontrib>Shaikh, Saad</creatorcontrib><creatorcontrib>Sivaswamy, Jayanthi</creatorcontrib><creatorcontrib>Tennakoon, Ruwan</creatorcontrib><creatorcontrib>Yadav, Shivin</creatorcontrib><creatorcontrib>De Zanet, Sandro</creatorcontrib><creatorcontrib>Waldstein, Sebastian M.</creatorcontrib><creatorcontrib>Gerendas, Bianca S.</creatorcontrib><creatorcontrib>Klaver, Caroline</creatorcontrib><creatorcontrib>Sanchez, Clara I.</creatorcontrib><creatorcontrib>Schmidt-Erfurth, Ursula</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on medical imaging</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bogunovic, Hrvoje</au><au>Venhuizen, Freerk</au><au>Klimscha, Sophie</au><au>Apostolopoulos, Stefanos</au><au>Bab-Hadiashar, Alireza</au><au>Bagci, Ulas</au><au>Beg, Mirza Faisal</au><au>Bekalo, Loza</au><au>Chen, Qiang</au><au>Ciller, Carlos</au><au>Gopinath, Karthik</au><au>Gostar, Amirali K.</au><au>Jeon, Kiwan</au><au>Ji, Zexuan</au><au>Kang, Sung Ho</au><au>Koozekanani, Dara D.</au><au>Lu, Donghuan</au><au>Morley, Dustin</au><au>Parhi, Keshab K.</au><au>Park, Hyoung Suk</au><au>Rashno, Abdolreza</au><au>Sarunic, Marinko</au><au>Shaikh, Saad</au><au>Sivaswamy, Jayanthi</au><au>Tennakoon, Ruwan</au><au>Yadav, Shivin</au><au>De Zanet, Sandro</au><au>Waldstein, Sebastian M.</au><au>Gerendas, Bianca S.</au><au>Klaver, Caroline</au><au>Sanchez, Clara I.</au><au>Schmidt-Erfurth, Ursula</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge</atitle><jtitle>IEEE transactions on medical imaging</jtitle><stitle>TMI</stitle><addtitle>IEEE Trans Med Imaging</addtitle><date>2019-08-01</date><risdate>2019</risdate><volume>38</volume><issue>8</issue><spage>1858</spage><epage>1874</epage><pages>1858-1874</pages><issn>0278-0062</issn><eissn>1558-254X</eissn><coden>ITMID4</coden><abstract>Retinal swelling due to the accumulation of fluid is associated with the most vision-threatening retinal diseases. Optical coherence tomography (OCT) is the current standard of care in assessing the presence and quantity of retinal fluid and image-guided treatment management. Deep learning methods have made their impact across medical imaging, and many retinal OCT analysis methods have been proposed. However, it is currently not clear how successful they are in interpreting the retinal fluid on OCT, which is due to the lack of standardized benchmarks. To address this, we organized a challenge RETOUCH in conjunction with MICCAI 2017, with eight teams participating. The challenge consisted of two tasks: fluid detection and fluid segmentation. It featured for the first time: all three retinal fluid types, with annotated images provided by two clinical centers, which were acquired with the three most common OCT device vendors from patients with two different retinal diseases. The analysis revealed that in the detection task, the performance on the automated fluid detection was within the inter-grader variability. However, in the segmentation task, fusing the automated methods produced segmentations that were superior to all individual methods, indicating the need for further improvements in the segmentation performance.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30835214</pmid><doi>10.1109/TMI.2019.2901398</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-2899-6279</orcidid><orcidid>https://orcid.org/0000-0002-9168-0894</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0278-0062
ispartof IEEE transactions on medical imaging, 2019-08, Vol.38 (8), p.1858-1874
issn 0278-0062
1558-254X
language eng
recordid cdi_ieee_primary_8653407
source IEEE Electronic Library (IEL)
subjects Algorithms
Automation
Benchmark testing
Benchmarks
Biomedical imaging
Databases, Factual
Diseases
Evaluation
Fluids
Humans
Image acquisition
Image analysis
image classification
Image Interpretation, Computer-Assisted - methods
Image processing
Image segmentation
Machine learning
Medical imaging
Optical Coherence Tomography
Retina
Retina - diagnostic imaging
Retinal Diseases - diagnostic imaging
Tomography, Optical Coherence - methods
title RETOUCH: The Retinal OCT Fluid Detection and Segmentation Benchmark and Challenge
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T19%3A28%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=RETOUCH:%20The%20Retinal%20OCT%20Fluid%20Detection%20and%20Segmentation%20Benchmark%20and%20Challenge&rft.jtitle=IEEE%20transactions%20on%20medical%20imaging&rft.au=Bogunovic,%20Hrvoje&rft.date=2019-08-01&rft.volume=38&rft.issue=8&rft.spage=1858&rft.epage=1874&rft.pages=1858-1874&rft.issn=0278-0062&rft.eissn=1558-254X&rft.coden=ITMID4&rft_id=info:doi/10.1109/TMI.2019.2901398&rft_dat=%3Cproquest_RIE%3E2188212333%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2268432888&rft_id=info:pmid/30835214&rft_ieee_id=8653407&rfr_iscdi=true