EEG Pathology Detection Based on Deep Learning

With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.27781-27788
Hauptverfasser: Alhussein, Musaed, Muhammad, Ghulam, Hossain, M. Shamim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 27788
container_issue
container_start_page 27781
container_title IEEE access
container_volume 7
creator Alhussein, Musaed
Muhammad, Ghulam
Hossain, M. Shamim
description With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated. The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the proposed system with the deep CNN model and fusion achieves 87.96% accuracy, which is better than some reported accuracy rates on the same corpus.
doi_str_mv 10.1109/ACCESS.2019.2901672
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8651516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8651516</ieee_id><doaj_id>oai_doaj_org_article_60eaa43fe7f947849fd13409ac328639</doaj_id><sourcerecordid>2455611602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-79e0b185da45e7f2a700ccad9bf260ab880f16d97c08b8b33f00de785e62e8323</originalsourceid><addsrcrecordid>eNpNUE1PwkAUbIwmEuQXcGniufXtbvfriFCRhEQT9LzZbl-xBLu4LQf-vcUS4ru8yeTNzMtE0ZRASgjop9l8nm82KQWiU6qBCElvohElQieMM3H7D99Hk7bdQT-qp7gcRWmeL-N32335vd-e4gV26LraN_GzbbGMe7BAPMRrtKGpm-1DdFfZfYuTyx5Hny_5x_w1Wb8tV_PZOnEZqC6RGqEgipc24ygraiWAc7bURUUF2EIpqIgotXSgClUwVgGUKBVHQVExysbRavAtvd2ZQ6i_bTgZb2vzR_iwNTZ0tdujEYDWZqzqc3QmVaarkrAMtHWMKsF07_U4eB2C_zli25mdP4amf9_QjHNBiIBzIhuuXPBtG7C6phIw557N0LM592wuPfeq6aCqEfGqUIITTgT7BUEwdgc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455611602</pqid></control><display><type>article</type><title>EEG Pathology Detection Based on Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alhussein, Musaed ; Muhammad, Ghulam ; Hossain, M. Shamim</creator><creatorcontrib>Alhussein, Musaed ; Muhammad, Ghulam ; Hossain, M. Shamim</creatorcontrib><description>With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated. The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the proposed system with the deep CNN model and fusion achieves 87.96% accuracy, which is better than some reported accuracy rates on the same corpus.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2901672</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Brain ; Brain modeling ; Deep learning ; EEG pathology ; EEG processing ; Electroencephalography ; Intelligent sensors ; Machine learning ; Medical services ; Model accuracy ; Multilayer perceptrons ; Pathology ; Real-time systems ; Signal processing ; Temple University Hospital EEG Abnormal Corpus</subject><ispartof>IEEE access, 2019, Vol.7, p.27781-27788</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-79e0b185da45e7f2a700ccad9bf260ab880f16d97c08b8b33f00de785e62e8323</citedby><cites>FETCH-LOGICAL-c408t-79e0b185da45e7f2a700ccad9bf260ab880f16d97c08b8b33f00de785e62e8323</cites><orcidid>0000-0002-9781-3969 ; 0000-0002-5538-6778 ; 0000-0001-5906-9422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8651516$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Alhussein, Musaed</creatorcontrib><creatorcontrib>Muhammad, Ghulam</creatorcontrib><creatorcontrib>Hossain, M. Shamim</creatorcontrib><title>EEG Pathology Detection Based on Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated. The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the proposed system with the deep CNN model and fusion achieves 87.96% accuracy, which is better than some reported accuracy rates on the same corpus.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Deep learning</subject><subject>EEG pathology</subject><subject>EEG processing</subject><subject>Electroencephalography</subject><subject>Intelligent sensors</subject><subject>Machine learning</subject><subject>Medical services</subject><subject>Model accuracy</subject><subject>Multilayer perceptrons</subject><subject>Pathology</subject><subject>Real-time systems</subject><subject>Signal processing</subject><subject>Temple University Hospital EEG Abnormal Corpus</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAUbIwmEuQXcGniufXtbvfriFCRhEQT9LzZbl-xBLu4LQf-vcUS4ru8yeTNzMtE0ZRASgjop9l8nm82KQWiU6qBCElvohElQieMM3H7D99Hk7bdQT-qp7gcRWmeL-N32335vd-e4gV26LraN_GzbbGMe7BAPMRrtKGpm-1DdFfZfYuTyx5Hny_5x_w1Wb8tV_PZOnEZqC6RGqEgipc24ygraiWAc7bURUUF2EIpqIgotXSgClUwVgGUKBVHQVExysbRavAtvd2ZQ6i_bTgZb2vzR_iwNTZ0tdujEYDWZqzqc3QmVaarkrAMtHWMKsF07_U4eB2C_zli25mdP4amf9_QjHNBiIBzIhuuXPBtG7C6phIw557N0LM592wuPfeq6aCqEfGqUIITTgT7BUEwdgc</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Alhussein, Musaed</creator><creator>Muhammad, Ghulam</creator><creator>Hossain, M. Shamim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9781-3969</orcidid><orcidid>https://orcid.org/0000-0002-5538-6778</orcidid><orcidid>https://orcid.org/0000-0001-5906-9422</orcidid></search><sort><creationdate>2019</creationdate><title>EEG Pathology Detection Based on Deep Learning</title><author>Alhussein, Musaed ; Muhammad, Ghulam ; Hossain, M. Shamim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-79e0b185da45e7f2a700ccad9bf260ab880f16d97c08b8b33f00de785e62e8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Deep learning</topic><topic>EEG pathology</topic><topic>EEG processing</topic><topic>Electroencephalography</topic><topic>Intelligent sensors</topic><topic>Machine learning</topic><topic>Medical services</topic><topic>Model accuracy</topic><topic>Multilayer perceptrons</topic><topic>Pathology</topic><topic>Real-time systems</topic><topic>Signal processing</topic><topic>Temple University Hospital EEG Abnormal Corpus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhussein, Musaed</creatorcontrib><creatorcontrib>Muhammad, Ghulam</creatorcontrib><creatorcontrib>Hossain, M. Shamim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhussein, Musaed</au><au>Muhammad, Ghulam</au><au>Hossain, M. Shamim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG Pathology Detection Based on Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>27781</spage><epage>27788</epage><pages>27781-27788</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated. The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the proposed system with the deep CNN model and fusion achieves 87.96% accuracy, which is better than some reported accuracy rates on the same corpus.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2901672</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9781-3969</orcidid><orcidid>https://orcid.org/0000-0002-5538-6778</orcidid><orcidid>https://orcid.org/0000-0001-5906-9422</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.27781-27788
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8651516
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Artificial neural networks
Brain
Brain modeling
Deep learning
EEG pathology
EEG processing
Electroencephalography
Intelligent sensors
Machine learning
Medical services
Model accuracy
Multilayer perceptrons
Pathology
Real-time systems
Signal processing
Temple University Hospital EEG Abnormal Corpus
title EEG Pathology Detection Based on Deep Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20Pathology%20Detection%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Alhussein,%20Musaed&rft.date=2019&rft.volume=7&rft.spage=27781&rft.epage=27788&rft.pages=27781-27788&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2901672&rft_dat=%3Cproquest_ieee_%3E2455611602%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455611602&rft_id=info:pmid/&rft_ieee_id=8651516&rft_doaj_id=oai_doaj_org_article_60eaa43fe7f947849fd13409ac328639&rfr_iscdi=true