EEG Pathology Detection Based on Deep Learning
With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.27781-27788 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 27788 |
---|---|
container_issue | |
container_start_page | 27781 |
container_title | IEEE access |
container_volume | 7 |
creator | Alhussein, Musaed Muhammad, Ghulam Hossain, M. Shamim |
description | With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated. The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the proposed system with the deep CNN model and fusion achieves 87.96% accuracy, which is better than some reported accuracy rates on the same corpus. |
doi_str_mv | 10.1109/ACCESS.2019.2901672 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8651516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8651516</ieee_id><doaj_id>oai_doaj_org_article_60eaa43fe7f947849fd13409ac328639</doaj_id><sourcerecordid>2455611602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-79e0b185da45e7f2a700ccad9bf260ab880f16d97c08b8b33f00de785e62e8323</originalsourceid><addsrcrecordid>eNpNUE1PwkAUbIwmEuQXcGniufXtbvfriFCRhEQT9LzZbl-xBLu4LQf-vcUS4ru8yeTNzMtE0ZRASgjop9l8nm82KQWiU6qBCElvohElQieMM3H7D99Hk7bdQT-qp7gcRWmeL-N32335vd-e4gV26LraN_GzbbGMe7BAPMRrtKGpm-1DdFfZfYuTyx5Hny_5x_w1Wb8tV_PZOnEZqC6RGqEgipc24ygraiWAc7bURUUF2EIpqIgotXSgClUwVgGUKBVHQVExysbRavAtvd2ZQ6i_bTgZb2vzR_iwNTZ0tdujEYDWZqzqc3QmVaarkrAMtHWMKsF07_U4eB2C_zli25mdP4amf9_QjHNBiIBzIhuuXPBtG7C6phIw557N0LM592wuPfeq6aCqEfGqUIITTgT7BUEwdgc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455611602</pqid></control><display><type>article</type><title>EEG Pathology Detection Based on Deep Learning</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Alhussein, Musaed ; Muhammad, Ghulam ; Hossain, M. Shamim</creator><creatorcontrib>Alhussein, Musaed ; Muhammad, Ghulam ; Hossain, M. Shamim</creatorcontrib><description>With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated. The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the proposed system with the deep CNN model and fusion achieves 87.96% accuracy, which is better than some reported accuracy rates on the same corpus.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2901672</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Artificial neural networks ; Brain ; Brain modeling ; Deep learning ; EEG pathology ; EEG processing ; Electroencephalography ; Intelligent sensors ; Machine learning ; Medical services ; Model accuracy ; Multilayer perceptrons ; Pathology ; Real-time systems ; Signal processing ; Temple University Hospital EEG Abnormal Corpus</subject><ispartof>IEEE access, 2019, Vol.7, p.27781-27788</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-79e0b185da45e7f2a700ccad9bf260ab880f16d97c08b8b33f00de785e62e8323</citedby><cites>FETCH-LOGICAL-c408t-79e0b185da45e7f2a700ccad9bf260ab880f16d97c08b8b33f00de785e62e8323</cites><orcidid>0000-0002-9781-3969 ; 0000-0002-5538-6778 ; 0000-0001-5906-9422</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8651516$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Alhussein, Musaed</creatorcontrib><creatorcontrib>Muhammad, Ghulam</creatorcontrib><creatorcontrib>Hossain, M. Shamim</creatorcontrib><title>EEG Pathology Detection Based on Deep Learning</title><title>IEEE access</title><addtitle>Access</addtitle><description>With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated. The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the proposed system with the deep CNN model and fusion achieves 87.96% accuracy, which is better than some reported accuracy rates on the same corpus.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain modeling</subject><subject>Deep learning</subject><subject>EEG pathology</subject><subject>EEG processing</subject><subject>Electroencephalography</subject><subject>Intelligent sensors</subject><subject>Machine learning</subject><subject>Medical services</subject><subject>Model accuracy</subject><subject>Multilayer perceptrons</subject><subject>Pathology</subject><subject>Real-time systems</subject><subject>Signal processing</subject><subject>Temple University Hospital EEG Abnormal Corpus</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUE1PwkAUbIwmEuQXcGniufXtbvfriFCRhEQT9LzZbl-xBLu4LQf-vcUS4ru8yeTNzMtE0ZRASgjop9l8nm82KQWiU6qBCElvohElQieMM3H7D99Hk7bdQT-qp7gcRWmeL-N32335vd-e4gV26LraN_GzbbGMe7BAPMRrtKGpm-1DdFfZfYuTyx5Hny_5x_w1Wb8tV_PZOnEZqC6RGqEgipc24ygraiWAc7bURUUF2EIpqIgotXSgClUwVgGUKBVHQVExysbRavAtvd2ZQ6i_bTgZb2vzR_iwNTZ0tdujEYDWZqzqc3QmVaarkrAMtHWMKsF07_U4eB2C_zli25mdP4amf9_QjHNBiIBzIhuuXPBtG7C6phIw557N0LM592wuPfeq6aCqEfGqUIITTgT7BUEwdgc</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Alhussein, Musaed</creator><creator>Muhammad, Ghulam</creator><creator>Hossain, M. Shamim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9781-3969</orcidid><orcidid>https://orcid.org/0000-0002-5538-6778</orcidid><orcidid>https://orcid.org/0000-0001-5906-9422</orcidid></search><sort><creationdate>2019</creationdate><title>EEG Pathology Detection Based on Deep Learning</title><author>Alhussein, Musaed ; Muhammad, Ghulam ; Hossain, M. Shamim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-79e0b185da45e7f2a700ccad9bf260ab880f16d97c08b8b33f00de785e62e8323</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain modeling</topic><topic>Deep learning</topic><topic>EEG pathology</topic><topic>EEG processing</topic><topic>Electroencephalography</topic><topic>Intelligent sensors</topic><topic>Machine learning</topic><topic>Medical services</topic><topic>Model accuracy</topic><topic>Multilayer perceptrons</topic><topic>Pathology</topic><topic>Real-time systems</topic><topic>Signal processing</topic><topic>Temple University Hospital EEG Abnormal Corpus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alhussein, Musaed</creatorcontrib><creatorcontrib>Muhammad, Ghulam</creatorcontrib><creatorcontrib>Hossain, M. Shamim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alhussein, Musaed</au><au>Muhammad, Ghulam</au><au>Hossain, M. Shamim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EEG Pathology Detection Based on Deep Learning</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>27781</spage><epage>27788</epage><pages>27781-27788</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>With the advancement of machine learning technologies, particularly deep learning, the automated systems to assist human life are flourishing. In this paper, we propose an automatic electroencephalogram (EEG) pathology detection system based on deep learning. Various types of pathologies can affect brain signals. Thus, the brain signals captured in the form of EEG signals can indicate whether a person suffers from pathology or not. In the proposed system, the raw EEG signals are processed in the form of a spatio-temporal representation. The spatio-temporal form of the EEG signals is the input to a convolutional neural network (CNN). Two different CNN models, namely, a shallow model and a deep model, are investigated using transfer learning. A fusion strategy based on a multilayer perceptron is also investigated. The experimental results on the Temple University Hospital EEG Abnormal Corpus v2.0.0 show that the proposed system with the deep CNN model and fusion achieves 87.96% accuracy, which is better than some reported accuracy rates on the same corpus.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2901672</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-9781-3969</orcidid><orcidid>https://orcid.org/0000-0002-5538-6778</orcidid><orcidid>https://orcid.org/0000-0001-5906-9422</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.27781-27788 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8651516 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Artificial neural networks Brain Brain modeling Deep learning EEG pathology EEG processing Electroencephalography Intelligent sensors Machine learning Medical services Model accuracy Multilayer perceptrons Pathology Real-time systems Signal processing Temple University Hospital EEG Abnormal Corpus |
title | EEG Pathology Detection Based on Deep Learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T03%3A58%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EEG%20Pathology%20Detection%20Based%20on%20Deep%20Learning&rft.jtitle=IEEE%20access&rft.au=Alhussein,%20Musaed&rft.date=2019&rft.volume=7&rft.spage=27781&rft.epage=27788&rft.pages=27781-27788&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2901672&rft_dat=%3Cproquest_ieee_%3E2455611602%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455611602&rft_id=info:pmid/&rft_ieee_id=8651516&rft_doaj_id=oai_doaj_org_article_60eaa43fe7f947849fd13409ac328639&rfr_iscdi=true |