Models of Trust in Human Control of Swarms With Varied Levels of Autonomy
In this paper, we study human trust and its computational models in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We implement three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. While the swarm in the MI LOA is controlled by a h...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on human-machine systems 2020-06, Vol.50 (3), p.194-204 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 204 |
---|---|
container_issue | 3 |
container_start_page | 194 |
container_title | IEEE transactions on human-machine systems |
container_volume | 50 |
creator | Nam, Changjoo Walker, Phillip Li, Huao Lewis, Michael Sycara, Katia |
description | In this paper, we study human trust and its computational models in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We implement three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. While the swarm in the MI LOA is controlled by a human operator and an autonomous search algorithm collaboratively, the swarms in the manual and autonomous LOAs are fully directed by the human and the search algorithm, respectively. From user studies, we find that humans tend to make their decisions based on physical characteristics of the swarm rather than its performance since the task performance of swarms is not clearly perceivable by humans. Based on the analysis, we formulate trust as a Markov decision process whose state space includes the factors affecting trust. We develop variations of the trust model for different LOAs. We employ an inverse reinforcement learning algorithm to learn behaviors of the operator from demonstrations where the learned behaviors are used to predict human trust. Compared to an existing model, our models reduce the prediction error by at most 39.6%, 36.5%, and 28.8% in the manual, MI, and auto-LOA, respectively. |
doi_str_mv | 10.1109/THMS.2019.2896845 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8651317</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8651317</ieee_id><sourcerecordid>2406700830</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-5e46308c50982af91009bc449830f6929543595ac9cf8fbb4062fd8a912619103</originalsourceid><addsrcrecordid>eNo9kMFKAzEQhoMoWLQPIF4Cnrdmkk2aOZaittDioVWPId0muKW7qcmu0rd3l1ZzmcB8_wzzEXIHbATA8HE9W65GnAGOuEalc3lBBhyUzrhg8vLvzxGuyTClHeue5lJKPSDzZdi6faLB03VsU0PLms7aytZ0Guomhn3fWf3YWCX6UTaf9N3G0m3pwn2fY5O2CXWojrfkytt9csNzvSFvz0_r6SxbvL7Mp5NFVnAUTSZdrgTThWSoufUIjOGmyHPUgnmFHGUuJEpbYOG132xyprjfaovAFXS0uCEPp7mHGL5alxqzC22su5WGd_C4u030FJyoIoaUovPmEMvKxqMBZnppppdmemnmLK3L3J8ypXPun9dKgoCx-AUTimWC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2406700830</pqid></control><display><type>article</type><title>Models of Trust in Human Control of Swarms With Varied Levels of Autonomy</title><source>IEEE Electronic Library (IEL)</source><creator>Nam, Changjoo ; Walker, Phillip ; Li, Huao ; Lewis, Michael ; Sycara, Katia</creator><creatorcontrib>Nam, Changjoo ; Walker, Phillip ; Li, Huao ; Lewis, Michael ; Sycara, Katia</creatorcontrib><description>In this paper, we study human trust and its computational models in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We implement three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. While the swarm in the MI LOA is controlled by a human operator and an autonomous search algorithm collaboratively, the swarms in the manual and autonomous LOAs are fully directed by the human and the search algorithm, respectively. From user studies, we find that humans tend to make their decisions based on physical characteristics of the swarm rather than its performance since the task performance of swarms is not clearly perceivable by humans. Based on the analysis, we formulate trust as a Markov decision process whose state space includes the factors affecting trust. We develop variations of the trust model for different LOAs. We employ an inverse reinforcement learning algorithm to learn behaviors of the operator from demonstrations where the learned behaviors are used to predict human trust. Compared to an existing model, our models reduce the prediction error by at most 39.6%, 36.5%, and 28.8% in the manual, MI, and auto-LOA, respectively.</description><identifier>ISSN: 2168-2291</identifier><identifier>EISSN: 2168-2305</identifier><identifier>DOI: 10.1109/THMS.2019.2896845</identifier><identifier>CODEN: ITHSA6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automation ; Autonomy ; Computational modeling ; Decision analysis ; Human–robot interaction ; human–swarm interaction ; Machine learning ; Markov analysis ; Markov processes ; multirobot systems ; Physical properties ; Predictive models ; Robot control ; Robot kinematics ; Robot sensing systems ; Search algorithms ; Supervisory control ; swarm robotics ; Task analysis ; trust</subject><ispartof>IEEE transactions on human-machine systems, 2020-06, Vol.50 (3), p.194-204</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-5e46308c50982af91009bc449830f6929543595ac9cf8fbb4062fd8a912619103</citedby><cites>FETCH-LOGICAL-c293t-5e46308c50982af91009bc449830f6929543595ac9cf8fbb4062fd8a912619103</cites><orcidid>0000-0002-9169-0785 ; 0000-0002-1013-9482 ; 0000-0001-7823-5211</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8651317$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8651317$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Nam, Changjoo</creatorcontrib><creatorcontrib>Walker, Phillip</creatorcontrib><creatorcontrib>Li, Huao</creatorcontrib><creatorcontrib>Lewis, Michael</creatorcontrib><creatorcontrib>Sycara, Katia</creatorcontrib><title>Models of Trust in Human Control of Swarms With Varied Levels of Autonomy</title><title>IEEE transactions on human-machine systems</title><addtitle>THMS</addtitle><description>In this paper, we study human trust and its computational models in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We implement three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. While the swarm in the MI LOA is controlled by a human operator and an autonomous search algorithm collaboratively, the swarms in the manual and autonomous LOAs are fully directed by the human and the search algorithm, respectively. From user studies, we find that humans tend to make their decisions based on physical characteristics of the swarm rather than its performance since the task performance of swarms is not clearly perceivable by humans. Based on the analysis, we formulate trust as a Markov decision process whose state space includes the factors affecting trust. We develop variations of the trust model for different LOAs. We employ an inverse reinforcement learning algorithm to learn behaviors of the operator from demonstrations where the learned behaviors are used to predict human trust. Compared to an existing model, our models reduce the prediction error by at most 39.6%, 36.5%, and 28.8% in the manual, MI, and auto-LOA, respectively.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Autonomy</subject><subject>Computational modeling</subject><subject>Decision analysis</subject><subject>Human–robot interaction</subject><subject>human–swarm interaction</subject><subject>Machine learning</subject><subject>Markov analysis</subject><subject>Markov processes</subject><subject>multirobot systems</subject><subject>Physical properties</subject><subject>Predictive models</subject><subject>Robot control</subject><subject>Robot kinematics</subject><subject>Robot sensing systems</subject><subject>Search algorithms</subject><subject>Supervisory control</subject><subject>swarm robotics</subject><subject>Task analysis</subject><subject>trust</subject><issn>2168-2291</issn><issn>2168-2305</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMFKAzEQhoMoWLQPIF4Cnrdmkk2aOZaittDioVWPId0muKW7qcmu0rd3l1ZzmcB8_wzzEXIHbATA8HE9W65GnAGOuEalc3lBBhyUzrhg8vLvzxGuyTClHeue5lJKPSDzZdi6faLB03VsU0PLms7aytZ0Guomhn3fWf3YWCX6UTaf9N3G0m3pwn2fY5O2CXWojrfkytt9csNzvSFvz0_r6SxbvL7Mp5NFVnAUTSZdrgTThWSoufUIjOGmyHPUgnmFHGUuJEpbYOG132xyprjfaovAFXS0uCEPp7mHGL5alxqzC22su5WGd_C4u030FJyoIoaUovPmEMvKxqMBZnppppdmemnmLK3L3J8ypXPun9dKgoCx-AUTimWC</recordid><startdate>202006</startdate><enddate>202006</enddate><creator>Nam, Changjoo</creator><creator>Walker, Phillip</creator><creator>Li, Huao</creator><creator>Lewis, Michael</creator><creator>Sycara, Katia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9169-0785</orcidid><orcidid>https://orcid.org/0000-0002-1013-9482</orcidid><orcidid>https://orcid.org/0000-0001-7823-5211</orcidid></search><sort><creationdate>202006</creationdate><title>Models of Trust in Human Control of Swarms With Varied Levels of Autonomy</title><author>Nam, Changjoo ; Walker, Phillip ; Li, Huao ; Lewis, Michael ; Sycara, Katia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-5e46308c50982af91009bc449830f6929543595ac9cf8fbb4062fd8a912619103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Autonomy</topic><topic>Computational modeling</topic><topic>Decision analysis</topic><topic>Human–robot interaction</topic><topic>human–swarm interaction</topic><topic>Machine learning</topic><topic>Markov analysis</topic><topic>Markov processes</topic><topic>multirobot systems</topic><topic>Physical properties</topic><topic>Predictive models</topic><topic>Robot control</topic><topic>Robot kinematics</topic><topic>Robot sensing systems</topic><topic>Search algorithms</topic><topic>Supervisory control</topic><topic>swarm robotics</topic><topic>Task analysis</topic><topic>trust</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nam, Changjoo</creatorcontrib><creatorcontrib>Walker, Phillip</creatorcontrib><creatorcontrib>Li, Huao</creatorcontrib><creatorcontrib>Lewis, Michael</creatorcontrib><creatorcontrib>Sycara, Katia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on human-machine systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Nam, Changjoo</au><au>Walker, Phillip</au><au>Li, Huao</au><au>Lewis, Michael</au><au>Sycara, Katia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Models of Trust in Human Control of Swarms With Varied Levels of Autonomy</atitle><jtitle>IEEE transactions on human-machine systems</jtitle><stitle>THMS</stitle><date>2020-06</date><risdate>2020</risdate><volume>50</volume><issue>3</issue><spage>194</spage><epage>204</epage><pages>194-204</pages><issn>2168-2291</issn><eissn>2168-2305</eissn><coden>ITHSA6</coden><abstract>In this paper, we study human trust and its computational models in supervisory control of swarm robots with varied levels of autonomy (LOA) in a target foraging task. We implement three LOAs: manual, mixed-initiative (MI), and fully autonomous LOA. While the swarm in the MI LOA is controlled by a human operator and an autonomous search algorithm collaboratively, the swarms in the manual and autonomous LOAs are fully directed by the human and the search algorithm, respectively. From user studies, we find that humans tend to make their decisions based on physical characteristics of the swarm rather than its performance since the task performance of swarms is not clearly perceivable by humans. Based on the analysis, we formulate trust as a Markov decision process whose state space includes the factors affecting trust. We develop variations of the trust model for different LOAs. We employ an inverse reinforcement learning algorithm to learn behaviors of the operator from demonstrations where the learned behaviors are used to predict human trust. Compared to an existing model, our models reduce the prediction error by at most 39.6%, 36.5%, and 28.8% in the manual, MI, and auto-LOA, respectively.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/THMS.2019.2896845</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-9169-0785</orcidid><orcidid>https://orcid.org/0000-0002-1013-9482</orcidid><orcidid>https://orcid.org/0000-0001-7823-5211</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2168-2291 |
ispartof | IEEE transactions on human-machine systems, 2020-06, Vol.50 (3), p.194-204 |
issn | 2168-2291 2168-2305 |
language | eng |
recordid | cdi_ieee_primary_8651317 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Automation Autonomy Computational modeling Decision analysis Human–robot interaction human–swarm interaction Machine learning Markov analysis Markov processes multirobot systems Physical properties Predictive models Robot control Robot kinematics Robot sensing systems Search algorithms Supervisory control swarm robotics Task analysis trust |
title | Models of Trust in Human Control of Swarms With Varied Levels of Autonomy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Models%20of%20Trust%20in%20Human%20Control%20of%20Swarms%20With%20Varied%20Levels%20of%20Autonomy&rft.jtitle=IEEE%20transactions%20on%20human-machine%20systems&rft.au=Nam,%20Changjoo&rft.date=2020-06&rft.volume=50&rft.issue=3&rft.spage=194&rft.epage=204&rft.pages=194-204&rft.issn=2168-2291&rft.eissn=2168-2305&rft.coden=ITHSA6&rft_id=info:doi/10.1109/THMS.2019.2896845&rft_dat=%3Cproquest_RIE%3E2406700830%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2406700830&rft_id=info:pmid/&rft_ieee_id=8651317&rfr_iscdi=true |