Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks

Vehicular networks are facing the challenges to support ubiquitous connections and high quality of service for numerous vehicles. To address these issues, mobile edge computing (MEC) is explored as a promising technology in vehicular networks by employing computing resources at the edge of vehicular...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.26652-26664
Hauptverfasser: Yang, Chao, Liu, Yi, Chen, Xin, Zhong, Weifeng, Xie, Shengli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26664
container_issue
container_start_page 26652
container_title IEEE access
container_volume 7
creator Yang, Chao
Liu, Yi
Chen, Xin
Zhong, Weifeng
Xie, Shengli
description Vehicular networks are facing the challenges to support ubiquitous connections and high quality of service for numerous vehicles. To address these issues, mobile edge computing (MEC) is explored as a promising technology in vehicular networks by employing computing resources at the edge of vehicular wireless access networks. In this paper, we study the efficient task offloading schemes in vehicular edge computing networks. The vehicles perform the offloading time selection, communication, and computing resource allocations optimally, the mobility of vehicles and the maximum latency of tasks are considered. To minimize the system costs, including the costs of the required communication and computing resources, we first analyze the offloading schemes in the independent MEC servers scenario. The offloading tasks are processed by the MEC servers deployed at the access point (AP) independently. A mobility-aware task offloading scheme is proposed. Then, in the cooperative MEC servers scenario, the MEC servers can further offload the collected overloading tasks to the adjacent servers at the next AP on the vehicles' moving direction. A location-based offloading scheme is proposed. In both scenarios, the tradeoffs between the task completed latency and the required communication and computation resources are mainly considered. Numerical results show that our proposed schemes can reduce the system costs efficiently, while the latency constraints are satisfied.
doi_str_mv 10.1109/ACCESS.2019.2900530
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8648330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8648330</ieee_id><doaj_id>oai_doaj_org_article_23d38185e0d8476998c3bc75f401318a</doaj_id><sourcerecordid>2455618063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-b32565d540a9452a5dc5b7d5da64118c775f8156463831d5a8999f45036fbd513</originalsourceid><addsrcrecordid>eNpNUctOwzAQjBBIoNIv6CUS5xQ79jr2sYoCVCpw4HG1HD-KS1oXJ1HF35MSVLGXXc3szK40STLDaI4xEreLsqxeXuY5wmKeC4SAoLPkKsdMZAQIO_83XybTtt2gofgAQXGVPFXOee3trksfQ-0b331ni4OKNn1V7Wf67FwTlPG7depCTN_th9d9o2JambVNy7Dd992RfLLdIcTP9jq5cKpp7fSvT5K3u-q1fMhWz_fLcrHKNEW8y2qSAwMDFClBIVdgNNSFAaMYxZjrogDHMTDKCCfYgOJCCEcBEeZqA5hMkuXoa4LayH30WxW_ZVBe_gIhrqWKndeNlTkxhGMOFhlOCyYE16TWwwGKMMFcDV43o9c-hq_etp3chD7uhvdlTgEY5oiRYYuMWzqGto3Wna5iJI85yDEHecxB_uUwqGajyltrTwrOKCcD-wN-yIEZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455618063</pqid></control><display><type>article</type><title>Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yang, Chao ; Liu, Yi ; Chen, Xin ; Zhong, Weifeng ; Xie, Shengli</creator><creatorcontrib>Yang, Chao ; Liu, Yi ; Chen, Xin ; Zhong, Weifeng ; Xie, Shengli</creatorcontrib><description>Vehicular networks are facing the challenges to support ubiquitous connections and high quality of service for numerous vehicles. To address these issues, mobile edge computing (MEC) is explored as a promising technology in vehicular networks by employing computing resources at the edge of vehicular wireless access networks. In this paper, we study the efficient task offloading schemes in vehicular edge computing networks. The vehicles perform the offloading time selection, communication, and computing resource allocations optimally, the mobility of vehicles and the maximum latency of tasks are considered. To minimize the system costs, including the costs of the required communication and computing resources, we first analyze the offloading schemes in the independent MEC servers scenario. The offloading tasks are processed by the MEC servers deployed at the access point (AP) independently. A mobility-aware task offloading scheme is proposed. Then, in the cooperative MEC servers scenario, the MEC servers can further offload the collected overloading tasks to the adjacent servers at the next AP on the vehicles' moving direction. A location-based offloading scheme is proposed. In both scenarios, the tradeoffs between the task completed latency and the required communication and computation resources are mainly considered. Numerical results show that our proposed schemes can reduce the system costs efficiently, while the latency constraints are satisfied.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2900530</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>5G mobile communication ; Ad hoc networks ; Communication ; Computation offloading ; Computational modeling ; Cost analysis ; Edge computing ; Mobile computing ; mobility ; Network latency ; offloading ; Resource allocation ; Resource management ; Roads ; Servers ; Task analysis ; Vehicles ; Vehicular network ; Wireless networks</subject><ispartof>IEEE access, 2019, Vol.7, p.26652-26664</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-b32565d540a9452a5dc5b7d5da64118c775f8156463831d5a8999f45036fbd513</citedby><cites>FETCH-LOGICAL-c408t-b32565d540a9452a5dc5b7d5da64118c775f8156463831d5a8999f45036fbd513</cites><orcidid>0000-0003-3588-2018 ; 0000-0003-2041-5214 ; 0000-0002-0335-2517 ; 0000-0001-7234-8135</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8648330$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhong, Weifeng</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><title>Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks</title><title>IEEE access</title><addtitle>Access</addtitle><description>Vehicular networks are facing the challenges to support ubiquitous connections and high quality of service for numerous vehicles. To address these issues, mobile edge computing (MEC) is explored as a promising technology in vehicular networks by employing computing resources at the edge of vehicular wireless access networks. In this paper, we study the efficient task offloading schemes in vehicular edge computing networks. The vehicles perform the offloading time selection, communication, and computing resource allocations optimally, the mobility of vehicles and the maximum latency of tasks are considered. To minimize the system costs, including the costs of the required communication and computing resources, we first analyze the offloading schemes in the independent MEC servers scenario. The offloading tasks are processed by the MEC servers deployed at the access point (AP) independently. A mobility-aware task offloading scheme is proposed. Then, in the cooperative MEC servers scenario, the MEC servers can further offload the collected overloading tasks to the adjacent servers at the next AP on the vehicles' moving direction. A location-based offloading scheme is proposed. In both scenarios, the tradeoffs between the task completed latency and the required communication and computation resources are mainly considered. Numerical results show that our proposed schemes can reduce the system costs efficiently, while the latency constraints are satisfied.</description><subject>5G mobile communication</subject><subject>Ad hoc networks</subject><subject>Communication</subject><subject>Computation offloading</subject><subject>Computational modeling</subject><subject>Cost analysis</subject><subject>Edge computing</subject><subject>Mobile computing</subject><subject>mobility</subject><subject>Network latency</subject><subject>offloading</subject><subject>Resource allocation</subject><subject>Resource management</subject><subject>Roads</subject><subject>Servers</subject><subject>Task analysis</subject><subject>Vehicles</subject><subject>Vehicular network</subject><subject>Wireless networks</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctOwzAQjBBIoNIv6CUS5xQ79jr2sYoCVCpw4HG1HD-KS1oXJ1HF35MSVLGXXc3szK40STLDaI4xEreLsqxeXuY5wmKeC4SAoLPkKsdMZAQIO_83XybTtt2gofgAQXGVPFXOee3trksfQ-0b331ni4OKNn1V7Wf67FwTlPG7depCTN_th9d9o2JambVNy7Dd992RfLLdIcTP9jq5cKpp7fSvT5K3u-q1fMhWz_fLcrHKNEW8y2qSAwMDFClBIVdgNNSFAaMYxZjrogDHMTDKCCfYgOJCCEcBEeZqA5hMkuXoa4LayH30WxW_ZVBe_gIhrqWKndeNlTkxhGMOFhlOCyYE16TWwwGKMMFcDV43o9c-hq_etp3chD7uhvdlTgEY5oiRYYuMWzqGto3Wna5iJI85yDEHecxB_uUwqGajyltrTwrOKCcD-wN-yIEZ</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Yang, Chao</creator><creator>Liu, Yi</creator><creator>Chen, Xin</creator><creator>Zhong, Weifeng</creator><creator>Xie, Shengli</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3588-2018</orcidid><orcidid>https://orcid.org/0000-0003-2041-5214</orcidid><orcidid>https://orcid.org/0000-0002-0335-2517</orcidid><orcidid>https://orcid.org/0000-0001-7234-8135</orcidid></search><sort><creationdate>2019</creationdate><title>Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks</title><author>Yang, Chao ; Liu, Yi ; Chen, Xin ; Zhong, Weifeng ; Xie, Shengli</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-b32565d540a9452a5dc5b7d5da64118c775f8156463831d5a8999f45036fbd513</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>5G mobile communication</topic><topic>Ad hoc networks</topic><topic>Communication</topic><topic>Computation offloading</topic><topic>Computational modeling</topic><topic>Cost analysis</topic><topic>Edge computing</topic><topic>Mobile computing</topic><topic>mobility</topic><topic>Network latency</topic><topic>offloading</topic><topic>Resource allocation</topic><topic>Resource management</topic><topic>Roads</topic><topic>Servers</topic><topic>Task analysis</topic><topic>Vehicles</topic><topic>Vehicular network</topic><topic>Wireless networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Chao</creatorcontrib><creatorcontrib>Liu, Yi</creatorcontrib><creatorcontrib>Chen, Xin</creatorcontrib><creatorcontrib>Zhong, Weifeng</creatorcontrib><creatorcontrib>Xie, Shengli</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Chao</au><au>Liu, Yi</au><au>Chen, Xin</au><au>Zhong, Weifeng</au><au>Xie, Shengli</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>26652</spage><epage>26664</epage><pages>26652-26664</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>Vehicular networks are facing the challenges to support ubiquitous connections and high quality of service for numerous vehicles. To address these issues, mobile edge computing (MEC) is explored as a promising technology in vehicular networks by employing computing resources at the edge of vehicular wireless access networks. In this paper, we study the efficient task offloading schemes in vehicular edge computing networks. The vehicles perform the offloading time selection, communication, and computing resource allocations optimally, the mobility of vehicles and the maximum latency of tasks are considered. To minimize the system costs, including the costs of the required communication and computing resources, we first analyze the offloading schemes in the independent MEC servers scenario. The offloading tasks are processed by the MEC servers deployed at the access point (AP) independently. A mobility-aware task offloading scheme is proposed. Then, in the cooperative MEC servers scenario, the MEC servers can further offload the collected overloading tasks to the adjacent servers at the next AP on the vehicles' moving direction. A location-based offloading scheme is proposed. In both scenarios, the tradeoffs between the task completed latency and the required communication and computation resources are mainly considered. Numerical results show that our proposed schemes can reduce the system costs efficiently, while the latency constraints are satisfied.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2900530</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3588-2018</orcidid><orcidid>https://orcid.org/0000-0003-2041-5214</orcidid><orcidid>https://orcid.org/0000-0002-0335-2517</orcidid><orcidid>https://orcid.org/0000-0001-7234-8135</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.26652-26664
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8648330
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects 5G mobile communication
Ad hoc networks
Communication
Computation offloading
Computational modeling
Cost analysis
Edge computing
Mobile computing
mobility
Network latency
offloading
Resource allocation
Resource management
Roads
Servers
Task analysis
Vehicles
Vehicular network
Wireless networks
title Efficient Mobility-Aware Task Offloading for Vehicular Edge Computing Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T05%3A27%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Mobility-Aware%20Task%20Offloading%20for%20Vehicular%20Edge%20Computing%20Networks&rft.jtitle=IEEE%20access&rft.au=Yang,%20Chao&rft.date=2019&rft.volume=7&rft.spage=26652&rft.epage=26664&rft.pages=26652-26664&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2900530&rft_dat=%3Cproquest_ieee_%3E2455618063%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455618063&rft_id=info:pmid/&rft_ieee_id=8648330&rft_doaj_id=oai_doaj_org_article_23d38185e0d8476998c3bc75f401318a&rfr_iscdi=true