Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay
In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measur...
Gespeichert in:
Veröffentlicht in: | IEEE antennas and wireless propagation letters 2019-04, Vol.18 (4), p.641-645 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 645 |
---|---|
container_issue | 4 |
container_start_page | 641 |
container_title | IEEE antennas and wireless propagation letters |
container_volume | 18 |
creator | Pu, Yu-Rong Yang, Hong-Juan Wang, Li-Li Zhao, Yu-Chen Luo, Rui Xi, Xiao-Li |
description | In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measured propagation delay and five typical meteorological factors. It can be found that propagation delay has strong correlation with meteorological factors, for example, there is a positive linear correlation between propagation delay and temperature. Then, a theoretical model of propagation delay is established by using a backward propagation neural network (BPNN), and its accuracy is validated by the good agreement between predicted results with measured values. Finally, a detailed quantitative comparison shows that on one hand, the more meteorological factors are considered, the more accurate the predictive model is; on the other hand, the BPNN provides a very convenient approach to handle a large number of factors. |
doi_str_mv | 10.1109/LAWP.2019.2900271 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8644030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8644030</ieee_id><sourcerecordid>2206611052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-93831583c8b3ab632012327bfd31078f9f98deab9d34f65c66a504880b102b063</originalsourceid><addsrcrecordid>eNo9kEFLwzAUx4MoOKcfQLwEPHe-JE2aHsd0U6i4w3QHDyFtk9HRNTXphH17Wyue3oP3-z_4_xC6JTAjBNKHbL5dzyiQdEZTAJqQMzQhPJYRT3hyPuxMRIRSfomuQtgDkERwNkGf80bXp1AFrJsSv7rS1FWzw87ijTm0zusaf2hf6a5yDV571xrfVSZg6zzOlnjl3bEpo63-Nr9XvRvJR1Pr0zW6sLoO5uZvTtH78mmzeI6yt9XLYp5FBU1ZF6VMMsIlK2TOdC5Y34IymuS2ZAQSaVObytLoPC1ZbAUvhNAcYikhJ0BzEGyK7se_rXdfRxM6tXdH3_cKilIQohfEaU-RkSq8C8Ebq1pfHbQ_KQJqcKgGh2pwqP4c9pm7MVMZY_55KeIYGLAfkOdsBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206611052</pqid></control><display><type>article</type><title>Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay</title><source>IEEE Electronic Library (IEL)</source><creator>Pu, Yu-Rong ; Yang, Hong-Juan ; Wang, Li-Li ; Zhao, Yu-Chen ; Luo, Rui ; Xi, Xiao-Li</creator><creatorcontrib>Pu, Yu-Rong ; Yang, Hong-Juan ; Wang, Li-Li ; Zhao, Yu-Chen ; Luo, Rui ; Xi, Xiao-Li</creatorcontrib><description>In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measured propagation delay and five typical meteorological factors. It can be found that propagation delay has strong correlation with meteorological factors, for example, there is a positive linear correlation between propagation delay and temperature. Then, a theoretical model of propagation delay is established by using a backward propagation neural network (BPNN), and its accuracy is validated by the good agreement between predicted results with measured values. Finally, a detailed quantitative comparison shows that on one hand, the more meteorological factors are considered, the more accurate the predictive model is; on the other hand, the BPNN provides a very convenient approach to handle a large number of factors.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2019.2900271</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Back propagation ; Backward propagation neural network (BPNN) ; Delay ; Ground wave propagation ; low-frequency (LF) ground wave ; Mathematical models ; Meteorological factors ; Meteorology ; Neural networks ; Predictive models ; Propagation ; Propagation delay ; Receivers ; Temperature ; Temperature measurement ; temporal variation properties</subject><ispartof>IEEE antennas and wireless propagation letters, 2019-04, Vol.18 (4), p.641-645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-93831583c8b3ab632012327bfd31078f9f98deab9d34f65c66a504880b102b063</citedby><cites>FETCH-LOGICAL-c293t-93831583c8b3ab632012327bfd31078f9f98deab9d34f65c66a504880b102b063</cites><orcidid>0000-0003-1986-1540 ; 0000-0003-4349-1308 ; 0000-0001-7804-8467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8644030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8644030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pu, Yu-Rong</creatorcontrib><creatorcontrib>Yang, Hong-Juan</creatorcontrib><creatorcontrib>Wang, Li-Li</creatorcontrib><creatorcontrib>Zhao, Yu-Chen</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Xi, Xiao-Li</creatorcontrib><title>Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measured propagation delay and five typical meteorological factors. It can be found that propagation delay has strong correlation with meteorological factors, for example, there is a positive linear correlation between propagation delay and temperature. Then, a theoretical model of propagation delay is established by using a backward propagation neural network (BPNN), and its accuracy is validated by the good agreement between predicted results with measured values. Finally, a detailed quantitative comparison shows that on one hand, the more meteorological factors are considered, the more accurate the predictive model is; on the other hand, the BPNN provides a very convenient approach to handle a large number of factors.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Backward propagation neural network (BPNN)</subject><subject>Delay</subject><subject>Ground wave propagation</subject><subject>low-frequency (LF) ground wave</subject><subject>Mathematical models</subject><subject>Meteorological factors</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Propagation</subject><subject>Propagation delay</subject><subject>Receivers</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>temporal variation properties</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAUx4MoOKcfQLwEPHe-JE2aHsd0U6i4w3QHDyFtk9HRNTXphH17Wyue3oP3-z_4_xC6JTAjBNKHbL5dzyiQdEZTAJqQMzQhPJYRT3hyPuxMRIRSfomuQtgDkERwNkGf80bXp1AFrJsSv7rS1FWzw87ijTm0zusaf2hf6a5yDV571xrfVSZg6zzOlnjl3bEpo63-Nr9XvRvJR1Pr0zW6sLoO5uZvTtH78mmzeI6yt9XLYp5FBU1ZF6VMMsIlK2TOdC5Y34IymuS2ZAQSaVObytLoPC1ZbAUvhNAcYikhJ0BzEGyK7se_rXdfRxM6tXdH3_cKilIQohfEaU-RkSq8C8Ebq1pfHbQ_KQJqcKgGh2pwqP4c9pm7MVMZY_55KeIYGLAfkOdsBg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Pu, Yu-Rong</creator><creator>Yang, Hong-Juan</creator><creator>Wang, Li-Li</creator><creator>Zhao, Yu-Chen</creator><creator>Luo, Rui</creator><creator>Xi, Xiao-Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1986-1540</orcidid><orcidid>https://orcid.org/0000-0003-4349-1308</orcidid><orcidid>https://orcid.org/0000-0001-7804-8467</orcidid></search><sort><creationdate>20190401</creationdate><title>Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay</title><author>Pu, Yu-Rong ; Yang, Hong-Juan ; Wang, Li-Li ; Zhao, Yu-Chen ; Luo, Rui ; Xi, Xiao-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-93831583c8b3ab632012327bfd31078f9f98deab9d34f65c66a504880b102b063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Backward propagation neural network (BPNN)</topic><topic>Delay</topic><topic>Ground wave propagation</topic><topic>low-frequency (LF) ground wave</topic><topic>Mathematical models</topic><topic>Meteorological factors</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Propagation</topic><topic>Propagation delay</topic><topic>Receivers</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>temporal variation properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Pu, Yu-Rong</creatorcontrib><creatorcontrib>Yang, Hong-Juan</creatorcontrib><creatorcontrib>Wang, Li-Li</creatorcontrib><creatorcontrib>Zhao, Yu-Chen</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Xi, Xiao-Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pu, Yu-Rong</au><au>Yang, Hong-Juan</au><au>Wang, Li-Li</au><au>Zhao, Yu-Chen</au><au>Luo, Rui</au><au>Xi, Xiao-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>18</volume><issue>4</issue><spage>641</spage><epage>645</epage><pages>641-645</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measured propagation delay and five typical meteorological factors. It can be found that propagation delay has strong correlation with meteorological factors, for example, there is a positive linear correlation between propagation delay and temperature. Then, a theoretical model of propagation delay is established by using a backward propagation neural network (BPNN), and its accuracy is validated by the good agreement between predicted results with measured values. Finally, a detailed quantitative comparison shows that on one hand, the more meteorological factors are considered, the more accurate the predictive model is; on the other hand, the BPNN provides a very convenient approach to handle a large number of factors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2019.2900271</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1986-1540</orcidid><orcidid>https://orcid.org/0000-0003-4349-1308</orcidid><orcidid>https://orcid.org/0000-0001-7804-8467</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-1225 |
ispartof | IEEE antennas and wireless propagation letters, 2019-04, Vol.18 (4), p.641-645 |
issn | 1536-1225 1548-5757 |
language | eng |
recordid | cdi_ieee_primary_8644030 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks Back propagation Backward propagation neural network (BPNN) Delay Ground wave propagation low-frequency (LF) ground wave Mathematical models Meteorological factors Meteorology Neural networks Predictive models Propagation Propagation delay Receivers Temperature Temperature measurement temporal variation properties |
title | Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Modeling%20of%20Temporal%20Variation%20Properties%20for%20LF%20Ground-Wave%20Propagation%20Delay&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Pu,%20Yu-Rong&rft.date=2019-04-01&rft.volume=18&rft.issue=4&rft.spage=641&rft.epage=645&rft.pages=641-645&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2019.2900271&rft_dat=%3Cproquest_RIE%3E2206611052%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206611052&rft_id=info:pmid/&rft_ieee_id=8644030&rfr_iscdi=true |