Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay

In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measur...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE antennas and wireless propagation letters 2019-04, Vol.18 (4), p.641-645
Hauptverfasser: Pu, Yu-Rong, Yang, Hong-Juan, Wang, Li-Li, Zhao, Yu-Chen, Luo, Rui, Xi, Xiao-Li
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 645
container_issue 4
container_start_page 641
container_title IEEE antennas and wireless propagation letters
container_volume 18
creator Pu, Yu-Rong
Yang, Hong-Juan
Wang, Li-Li
Zhao, Yu-Chen
Luo, Rui
Xi, Xiao-Li
description In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measured propagation delay and five typical meteorological factors. It can be found that propagation delay has strong correlation with meteorological factors, for example, there is a positive linear correlation between propagation delay and temperature. Then, a theoretical model of propagation delay is established by using a backward propagation neural network (BPNN), and its accuracy is validated by the good agreement between predicted results with measured values. Finally, a detailed quantitative comparison shows that on one hand, the more meteorological factors are considered, the more accurate the predictive model is; on the other hand, the BPNN provides a very convenient approach to handle a large number of factors.
doi_str_mv 10.1109/LAWP.2019.2900271
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8644030</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8644030</ieee_id><sourcerecordid>2206611052</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-93831583c8b3ab632012327bfd31078f9f98deab9d34f65c66a504880b102b063</originalsourceid><addsrcrecordid>eNo9kEFLwzAUx4MoOKcfQLwEPHe-JE2aHsd0U6i4w3QHDyFtk9HRNTXphH17Wyue3oP3-z_4_xC6JTAjBNKHbL5dzyiQdEZTAJqQMzQhPJYRT3hyPuxMRIRSfomuQtgDkERwNkGf80bXp1AFrJsSv7rS1FWzw87ijTm0zusaf2hf6a5yDV571xrfVSZg6zzOlnjl3bEpo63-Nr9XvRvJR1Pr0zW6sLoO5uZvTtH78mmzeI6yt9XLYp5FBU1ZF6VMMsIlK2TOdC5Y34IymuS2ZAQSaVObytLoPC1ZbAUvhNAcYikhJ0BzEGyK7se_rXdfRxM6tXdH3_cKilIQohfEaU-RkSq8C8Ebq1pfHbQ_KQJqcKgGh2pwqP4c9pm7MVMZY_55KeIYGLAfkOdsBg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2206611052</pqid></control><display><type>article</type><title>Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay</title><source>IEEE Electronic Library (IEL)</source><creator>Pu, Yu-Rong ; Yang, Hong-Juan ; Wang, Li-Li ; Zhao, Yu-Chen ; Luo, Rui ; Xi, Xiao-Li</creator><creatorcontrib>Pu, Yu-Rong ; Yang, Hong-Juan ; Wang, Li-Li ; Zhao, Yu-Chen ; Luo, Rui ; Xi, Xiao-Li</creatorcontrib><description>In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measured propagation delay and five typical meteorological factors. It can be found that propagation delay has strong correlation with meteorological factors, for example, there is a positive linear correlation between propagation delay and temperature. Then, a theoretical model of propagation delay is established by using a backward propagation neural network (BPNN), and its accuracy is validated by the good agreement between predicted results with measured values. Finally, a detailed quantitative comparison shows that on one hand, the more meteorological factors are considered, the more accurate the predictive model is; on the other hand, the BPNN provides a very convenient approach to handle a large number of factors.</description><identifier>ISSN: 1536-1225</identifier><identifier>EISSN: 1548-5757</identifier><identifier>DOI: 10.1109/LAWP.2019.2900271</identifier><identifier>CODEN: IAWPA7</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; Back propagation ; Backward propagation neural network (BPNN) ; Delay ; Ground wave propagation ; low-frequency (LF) ground wave ; Mathematical models ; Meteorological factors ; Meteorology ; Neural networks ; Predictive models ; Propagation ; Propagation delay ; Receivers ; Temperature ; Temperature measurement ; temporal variation properties</subject><ispartof>IEEE antennas and wireless propagation letters, 2019-04, Vol.18 (4), p.641-645</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-93831583c8b3ab632012327bfd31078f9f98deab9d34f65c66a504880b102b063</citedby><cites>FETCH-LOGICAL-c293t-93831583c8b3ab632012327bfd31078f9f98deab9d34f65c66a504880b102b063</cites><orcidid>0000-0003-1986-1540 ; 0000-0003-4349-1308 ; 0000-0001-7804-8467</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8644030$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8644030$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Pu, Yu-Rong</creatorcontrib><creatorcontrib>Yang, Hong-Juan</creatorcontrib><creatorcontrib>Wang, Li-Li</creatorcontrib><creatorcontrib>Zhao, Yu-Chen</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Xi, Xiao-Li</creatorcontrib><title>Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay</title><title>IEEE antennas and wireless propagation letters</title><addtitle>LAWP</addtitle><description>In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measured propagation delay and five typical meteorological factors. It can be found that propagation delay has strong correlation with meteorological factors, for example, there is a positive linear correlation between propagation delay and temperature. Then, a theoretical model of propagation delay is established by using a backward propagation neural network (BPNN), and its accuracy is validated by the good agreement between predicted results with measured values. Finally, a detailed quantitative comparison shows that on one hand, the more meteorological factors are considered, the more accurate the predictive model is; on the other hand, the BPNN provides a very convenient approach to handle a large number of factors.</description><subject>Artificial neural networks</subject><subject>Back propagation</subject><subject>Backward propagation neural network (BPNN)</subject><subject>Delay</subject><subject>Ground wave propagation</subject><subject>low-frequency (LF) ground wave</subject><subject>Mathematical models</subject><subject>Meteorological factors</subject><subject>Meteorology</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Propagation</subject><subject>Propagation delay</subject><subject>Receivers</subject><subject>Temperature</subject><subject>Temperature measurement</subject><subject>temporal variation properties</subject><issn>1536-1225</issn><issn>1548-5757</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kEFLwzAUx4MoOKcfQLwEPHe-JE2aHsd0U6i4w3QHDyFtk9HRNTXphH17Wyue3oP3-z_4_xC6JTAjBNKHbL5dzyiQdEZTAJqQMzQhPJYRT3hyPuxMRIRSfomuQtgDkERwNkGf80bXp1AFrJsSv7rS1FWzw87ijTm0zusaf2hf6a5yDV571xrfVSZg6zzOlnjl3bEpo63-Nr9XvRvJR1Pr0zW6sLoO5uZvTtH78mmzeI6yt9XLYp5FBU1ZF6VMMsIlK2TOdC5Y34IymuS2ZAQSaVObytLoPC1ZbAUvhNAcYikhJ0BzEGyK7se_rXdfRxM6tXdH3_cKilIQohfEaU-RkSq8C8Ebq1pfHbQ_KQJqcKgGh2pwqP4c9pm7MVMZY_55KeIYGLAfkOdsBg</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Pu, Yu-Rong</creator><creator>Yang, Hong-Juan</creator><creator>Wang, Li-Li</creator><creator>Zhao, Yu-Chen</creator><creator>Luo, Rui</creator><creator>Xi, Xiao-Li</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1986-1540</orcidid><orcidid>https://orcid.org/0000-0003-4349-1308</orcidid><orcidid>https://orcid.org/0000-0001-7804-8467</orcidid></search><sort><creationdate>20190401</creationdate><title>Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay</title><author>Pu, Yu-Rong ; Yang, Hong-Juan ; Wang, Li-Li ; Zhao, Yu-Chen ; Luo, Rui ; Xi, Xiao-Li</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-93831583c8b3ab632012327bfd31078f9f98deab9d34f65c66a504880b102b063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Artificial neural networks</topic><topic>Back propagation</topic><topic>Backward propagation neural network (BPNN)</topic><topic>Delay</topic><topic>Ground wave propagation</topic><topic>low-frequency (LF) ground wave</topic><topic>Mathematical models</topic><topic>Meteorological factors</topic><topic>Meteorology</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Propagation</topic><topic>Propagation delay</topic><topic>Receivers</topic><topic>Temperature</topic><topic>Temperature measurement</topic><topic>temporal variation properties</topic><toplevel>online_resources</toplevel><creatorcontrib>Pu, Yu-Rong</creatorcontrib><creatorcontrib>Yang, Hong-Juan</creatorcontrib><creatorcontrib>Wang, Li-Li</creatorcontrib><creatorcontrib>Zhao, Yu-Chen</creatorcontrib><creatorcontrib>Luo, Rui</creatorcontrib><creatorcontrib>Xi, Xiao-Li</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE antennas and wireless propagation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Pu, Yu-Rong</au><au>Yang, Hong-Juan</au><au>Wang, Li-Li</au><au>Zhao, Yu-Chen</au><au>Luo, Rui</au><au>Xi, Xiao-Li</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay</atitle><jtitle>IEEE antennas and wireless propagation letters</jtitle><stitle>LAWP</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>18</volume><issue>4</issue><spage>641</spage><epage>645</epage><pages>641-645</pages><issn>1536-1225</issn><eissn>1548-5757</eissn><coden>IAWPA7</coden><abstract>In order to further improve the predictive accuracy of low-frequency (LF) ground-wave propagation delay, it is necessary to establish a proper model that can take complex temporal variation properties of propagation delay into account. In this letter, we first analyze the relationship between measured propagation delay and five typical meteorological factors. It can be found that propagation delay has strong correlation with meteorological factors, for example, there is a positive linear correlation between propagation delay and temperature. Then, a theoretical model of propagation delay is established by using a backward propagation neural network (BPNN), and its accuracy is validated by the good agreement between predicted results with measured values. Finally, a detailed quantitative comparison shows that on one hand, the more meteorological factors are considered, the more accurate the predictive model is; on the other hand, the BPNN provides a very convenient approach to handle a large number of factors.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/LAWP.2019.2900271</doi><tpages>5</tpages><orcidid>https://orcid.org/0000-0003-1986-1540</orcidid><orcidid>https://orcid.org/0000-0003-4349-1308</orcidid><orcidid>https://orcid.org/0000-0001-7804-8467</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-1225
ispartof IEEE antennas and wireless propagation letters, 2019-04, Vol.18 (4), p.641-645
issn 1536-1225
1548-5757
language eng
recordid cdi_ieee_primary_8644030
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Back propagation
Backward propagation neural network (BPNN)
Delay
Ground wave propagation
low-frequency (LF) ground wave
Mathematical models
Meteorological factors
Meteorology
Neural networks
Predictive models
Propagation
Propagation delay
Receivers
Temperature
Temperature measurement
temporal variation properties
title Analysis and Modeling of Temporal Variation Properties for LF Ground-Wave Propagation Delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T08%3A03%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20and%20Modeling%20of%20Temporal%20Variation%20Properties%20for%20LF%20Ground-Wave%20Propagation%20Delay&rft.jtitle=IEEE%20antennas%20and%20wireless%20propagation%20letters&rft.au=Pu,%20Yu-Rong&rft.date=2019-04-01&rft.volume=18&rft.issue=4&rft.spage=641&rft.epage=645&rft.pages=641-645&rft.issn=1536-1225&rft.eissn=1548-5757&rft.coden=IAWPA7&rft_id=info:doi/10.1109/LAWP.2019.2900271&rft_dat=%3Cproquest_RIE%3E2206611052%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2206611052&rft_id=info:pmid/&rft_ieee_id=8644030&rfr_iscdi=true