EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm
Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, i...
Gespeichert in:
Veröffentlicht in: | IEEE sensors journal 2019-06, Vol.19 (12), p.4705-4716 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4716 |
---|---|
container_issue | 12 |
container_start_page | 4705 |
container_title | IEEE sensors journal |
container_volume | 19 |
creator | Yuste-Delgado, Antonio Jesus Cuevas-Martinez, Juan Carlos Trivino-Cabrera, Alicia |
description | Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, in turn, to prolong the lifetime of the network. Thus, collaborative management techniques, like clustering, are usually implemented. This paper proposes a novel unequal distributed clustering algorithm for wireless sensor networks that employs a new set of input variables. Compared with previous works, these variables help for a more accurate estimation of the convenience of a node to be a cluster head. The developed algorithm relies on local information of the sensors to diminish the data exchange, reduce the interference and the consumption of the transmission processes. Because of the underlying uncertainty of the local data, a type-2 fuzzy logic system constitutes the basis of the proposed clustering algorithm whose knowledge base is sampled to allow its feasible implementation in a node. In addition, it is used an unequal scheme for the cluster sizes because it has been demonstrated that those methods are more convenient in terms of energy consumption. The simulation results demonstrate the effectiveness of the algorithm to extend the network lifetime. |
doi_str_mv | 10.1109/JSEN.2019.2900094 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8643956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8643956</ieee_id><sourcerecordid>2226161185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c3b88e27491b9a6d3bd3b86fcd7af2d1a172d3595eb6bfa0913593ff658042043</originalsourceid><addsrcrecordid>eNo9kFtLwzAUgIMoOKc_QHwp-NyZkzRp8ji61gtDH9zAt5C26dbRtVvSPmy_3pSJcOBc-M458CH0CHgGgOXLx3f6OSMY5IxIjLGMrtAEGBMhxJG4HmuKw4jGP7fozrkd9mTM4gnK0vUiS4IwSNutbgtTBuvWHAfdBIva9bbOh97PVqeDCUmQDefzKUiawfXG1u0mmDebztb9dn-PbirdOPPwl6donaWr5C1cfr2-J_NlWBBJ-7CguRCGxJGEXGpe0tyH4FVRxroiJWiISUmZZCbneaWxBN_QquJM4IjgiE7R8-XuwXbHwbhe7brBtv6lIoRw4ACCeQouVGE756yp1MHWe21PCrAadalRlxp1qT9dfufpslMbY_55wSMqGae_NCVkrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226161185</pqid></control><display><type>article</type><title>EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Yuste-Delgado, Antonio Jesus ; Cuevas-Martinez, Juan Carlos ; Trivino-Cabrera, Alicia</creator><creatorcontrib>Yuste-Delgado, Antonio Jesus ; Cuevas-Martinez, Juan Carlos ; Trivino-Cabrera, Alicia</creatorcontrib><description>Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, in turn, to prolong the lifetime of the network. Thus, collaborative management techniques, like clustering, are usually implemented. This paper proposes a novel unequal distributed clustering algorithm for wireless sensor networks that employs a new set of input variables. Compared with previous works, these variables help for a more accurate estimation of the convenience of a node to be a cluster head. The developed algorithm relies on local information of the sensors to diminish the data exchange, reduce the interference and the consumption of the transmission processes. Because of the underlying uncertainty of the local data, a type-2 fuzzy logic system constitutes the basis of the proposed clustering algorithm whose knowledge base is sampled to allow its feasible implementation in a node. In addition, it is used an unequal scheme for the cluster sizes because it has been demonstrated that those methods are more convenient in terms of energy consumption. The simulation results demonstrate the effectiveness of the algorithm to extend the network lifetime.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2900094</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Computer simulation ; Data exchange ; distributed system ; Energy consumption ; Estimation ; Fuzzy logic ; fuzzy system ; Fuzzy systems ; Knowledge base ; Nodes ; Remote sensors ; Sensors ; unequal clustering ; Wireless networks ; Wireless sensor network ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2019-06, Vol.19 (12), p.4705-4716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c3b88e27491b9a6d3bd3b86fcd7af2d1a172d3595eb6bfa0913593ff658042043</citedby><cites>FETCH-LOGICAL-c293t-c3b88e27491b9a6d3bd3b86fcd7af2d1a172d3595eb6bfa0913593ff658042043</cites><orcidid>0000-0003-3749-5986 ; 0000-0002-7516-2878 ; 0000-0002-9321-1709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8643956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8643956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuste-Delgado, Antonio Jesus</creatorcontrib><creatorcontrib>Cuevas-Martinez, Juan Carlos</creatorcontrib><creatorcontrib>Trivino-Cabrera, Alicia</creatorcontrib><title>EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, in turn, to prolong the lifetime of the network. Thus, collaborative management techniques, like clustering, are usually implemented. This paper proposes a novel unequal distributed clustering algorithm for wireless sensor networks that employs a new set of input variables. Compared with previous works, these variables help for a more accurate estimation of the convenience of a node to be a cluster head. The developed algorithm relies on local information of the sensors to diminish the data exchange, reduce the interference and the consumption of the transmission processes. Because of the underlying uncertainty of the local data, a type-2 fuzzy logic system constitutes the basis of the proposed clustering algorithm whose knowledge base is sampled to allow its feasible implementation in a node. In addition, it is used an unequal scheme for the cluster sizes because it has been demonstrated that those methods are more convenient in terms of energy consumption. The simulation results demonstrate the effectiveness of the algorithm to extend the network lifetime.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computer simulation</subject><subject>Data exchange</subject><subject>distributed system</subject><subject>Energy consumption</subject><subject>Estimation</subject><subject>Fuzzy logic</subject><subject>fuzzy system</subject><subject>Fuzzy systems</subject><subject>Knowledge base</subject><subject>Nodes</subject><subject>Remote sensors</subject><subject>Sensors</subject><subject>unequal clustering</subject><subject>Wireless networks</subject><subject>Wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLwzAUgIMoOKc_QHwp-NyZkzRp8ji61gtDH9zAt5C26dbRtVvSPmy_3pSJcOBc-M458CH0CHgGgOXLx3f6OSMY5IxIjLGMrtAEGBMhxJG4HmuKw4jGP7fozrkd9mTM4gnK0vUiS4IwSNutbgtTBuvWHAfdBIva9bbOh97PVqeDCUmQDefzKUiawfXG1u0mmDebztb9dn-PbirdOPPwl6donaWr5C1cfr2-J_NlWBBJ-7CguRCGxJGEXGpe0tyH4FVRxroiJWiISUmZZCbneaWxBN_QquJM4IjgiE7R8-XuwXbHwbhe7brBtv6lIoRw4ACCeQouVGE756yp1MHWe21PCrAadalRlxp1qT9dfufpslMbY_55wSMqGae_NCVkrw</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Yuste-Delgado, Antonio Jesus</creator><creator>Cuevas-Martinez, Juan Carlos</creator><creator>Trivino-Cabrera, Alicia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3749-5986</orcidid><orcidid>https://orcid.org/0000-0002-7516-2878</orcidid><orcidid>https://orcid.org/0000-0002-9321-1709</orcidid></search><sort><creationdate>20190615</creationdate><title>EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm</title><author>Yuste-Delgado, Antonio Jesus ; Cuevas-Martinez, Juan Carlos ; Trivino-Cabrera, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c3b88e27491b9a6d3bd3b86fcd7af2d1a172d3595eb6bfa0913593ff658042043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computer simulation</topic><topic>Data exchange</topic><topic>distributed system</topic><topic>Energy consumption</topic><topic>Estimation</topic><topic>Fuzzy logic</topic><topic>fuzzy system</topic><topic>Fuzzy systems</topic><topic>Knowledge base</topic><topic>Nodes</topic><topic>Remote sensors</topic><topic>Sensors</topic><topic>unequal clustering</topic><topic>Wireless networks</topic><topic>Wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuste-Delgado, Antonio Jesus</creatorcontrib><creatorcontrib>Cuevas-Martinez, Juan Carlos</creatorcontrib><creatorcontrib>Trivino-Cabrera, Alicia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuste-Delgado, Antonio Jesus</au><au>Cuevas-Martinez, Juan Carlos</au><au>Trivino-Cabrera, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-06-15</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>4705</spage><epage>4716</epage><pages>4705-4716</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, in turn, to prolong the lifetime of the network. Thus, collaborative management techniques, like clustering, are usually implemented. This paper proposes a novel unequal distributed clustering algorithm for wireless sensor networks that employs a new set of input variables. Compared with previous works, these variables help for a more accurate estimation of the convenience of a node to be a cluster head. The developed algorithm relies on local information of the sensors to diminish the data exchange, reduce the interference and the consumption of the transmission processes. Because of the underlying uncertainty of the local data, a type-2 fuzzy logic system constitutes the basis of the proposed clustering algorithm whose knowledge base is sampled to allow its feasible implementation in a node. In addition, it is used an unequal scheme for the cluster sizes because it has been demonstrated that those methods are more convenient in terms of energy consumption. The simulation results demonstrate the effectiveness of the algorithm to extend the network lifetime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2900094</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3749-5986</orcidid><orcidid>https://orcid.org/0000-0002-7516-2878</orcidid><orcidid>https://orcid.org/0000-0002-9321-1709</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1530-437X |
ispartof | IEEE sensors journal, 2019-06, Vol.19 (12), p.4705-4716 |
issn | 1530-437X 1558-1748 |
language | eng |
recordid | cdi_ieee_primary_8643956 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Clustering Clustering algorithms Computer simulation Data exchange distributed system Energy consumption Estimation Fuzzy logic fuzzy system Fuzzy systems Knowledge base Nodes Remote sensors Sensors unequal clustering Wireless networks Wireless sensor network Wireless sensor networks |
title | EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EUDFC%20-%20Enhanced%20Unequal%20Distributed%20Type-2%20Fuzzy%20Clustering%20Algorithm&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yuste-Delgado,%20Antonio%20Jesus&rft.date=2019-06-15&rft.volume=19&rft.issue=12&rft.spage=4705&rft.epage=4716&rft.pages=4705-4716&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2900094&rft_dat=%3Cproquest_RIE%3E2226161185%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226161185&rft_id=info:pmid/&rft_ieee_id=8643956&rfr_iscdi=true |