EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm

Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE sensors journal 2019-06, Vol.19 (12), p.4705-4716
Hauptverfasser: Yuste-Delgado, Antonio Jesus, Cuevas-Martinez, Juan Carlos, Trivino-Cabrera, Alicia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4716
container_issue 12
container_start_page 4705
container_title IEEE sensors journal
container_volume 19
creator Yuste-Delgado, Antonio Jesus
Cuevas-Martinez, Juan Carlos
Trivino-Cabrera, Alicia
description Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, in turn, to prolong the lifetime of the network. Thus, collaborative management techniques, like clustering, are usually implemented. This paper proposes a novel unequal distributed clustering algorithm for wireless sensor networks that employs a new set of input variables. Compared with previous works, these variables help for a more accurate estimation of the convenience of a node to be a cluster head. The developed algorithm relies on local information of the sensors to diminish the data exchange, reduce the interference and the consumption of the transmission processes. Because of the underlying uncertainty of the local data, a type-2 fuzzy logic system constitutes the basis of the proposed clustering algorithm whose knowledge base is sampled to allow its feasible implementation in a node. In addition, it is used an unequal scheme for the cluster sizes because it has been demonstrated that those methods are more convenient in terms of energy consumption. The simulation results demonstrate the effectiveness of the algorithm to extend the network lifetime.
doi_str_mv 10.1109/JSEN.2019.2900094
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8643956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8643956</ieee_id><sourcerecordid>2226161185</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-c3b88e27491b9a6d3bd3b86fcd7af2d1a172d3595eb6bfa0913593ff658042043</originalsourceid><addsrcrecordid>eNo9kFtLwzAUgIMoOKc_QHwp-NyZkzRp8ji61gtDH9zAt5C26dbRtVvSPmy_3pSJcOBc-M458CH0CHgGgOXLx3f6OSMY5IxIjLGMrtAEGBMhxJG4HmuKw4jGP7fozrkd9mTM4gnK0vUiS4IwSNutbgtTBuvWHAfdBIva9bbOh97PVqeDCUmQDefzKUiawfXG1u0mmDebztb9dn-PbirdOPPwl6donaWr5C1cfr2-J_NlWBBJ-7CguRCGxJGEXGpe0tyH4FVRxroiJWiISUmZZCbneaWxBN_QquJM4IjgiE7R8-XuwXbHwbhe7brBtv6lIoRw4ACCeQouVGE756yp1MHWe21PCrAadalRlxp1qT9dfufpslMbY_55wSMqGae_NCVkrw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2226161185</pqid></control><display><type>article</type><title>EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm</title><source>IEEE Electronic Library (IEL)</source><creator>Yuste-Delgado, Antonio Jesus ; Cuevas-Martinez, Juan Carlos ; Trivino-Cabrera, Alicia</creator><creatorcontrib>Yuste-Delgado, Antonio Jesus ; Cuevas-Martinez, Juan Carlos ; Trivino-Cabrera, Alicia</creatorcontrib><description>Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, in turn, to prolong the lifetime of the network. Thus, collaborative management techniques, like clustering, are usually implemented. This paper proposes a novel unequal distributed clustering algorithm for wireless sensor networks that employs a new set of input variables. Compared with previous works, these variables help for a more accurate estimation of the convenience of a node to be a cluster head. The developed algorithm relies on local information of the sensors to diminish the data exchange, reduce the interference and the consumption of the transmission processes. Because of the underlying uncertainty of the local data, a type-2 fuzzy logic system constitutes the basis of the proposed clustering algorithm whose knowledge base is sampled to allow its feasible implementation in a node. In addition, it is used an unequal scheme for the cluster sizes because it has been demonstrated that those methods are more convenient in terms of energy consumption. The simulation results demonstrate the effectiveness of the algorithm to extend the network lifetime.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2019.2900094</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Clustering ; Clustering algorithms ; Computer simulation ; Data exchange ; distributed system ; Energy consumption ; Estimation ; Fuzzy logic ; fuzzy system ; Fuzzy systems ; Knowledge base ; Nodes ; Remote sensors ; Sensors ; unequal clustering ; Wireless networks ; Wireless sensor network ; Wireless sensor networks</subject><ispartof>IEEE sensors journal, 2019-06, Vol.19 (12), p.4705-4716</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-c3b88e27491b9a6d3bd3b86fcd7af2d1a172d3595eb6bfa0913593ff658042043</citedby><cites>FETCH-LOGICAL-c293t-c3b88e27491b9a6d3bd3b86fcd7af2d1a172d3595eb6bfa0913593ff658042043</cites><orcidid>0000-0003-3749-5986 ; 0000-0002-7516-2878 ; 0000-0002-9321-1709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8643956$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8643956$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuste-Delgado, Antonio Jesus</creatorcontrib><creatorcontrib>Cuevas-Martinez, Juan Carlos</creatorcontrib><creatorcontrib>Trivino-Cabrera, Alicia</creatorcontrib><title>EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, in turn, to prolong the lifetime of the network. Thus, collaborative management techniques, like clustering, are usually implemented. This paper proposes a novel unequal distributed clustering algorithm for wireless sensor networks that employs a new set of input variables. Compared with previous works, these variables help for a more accurate estimation of the convenience of a node to be a cluster head. The developed algorithm relies on local information of the sensors to diminish the data exchange, reduce the interference and the consumption of the transmission processes. Because of the underlying uncertainty of the local data, a type-2 fuzzy logic system constitutes the basis of the proposed clustering algorithm whose knowledge base is sampled to allow its feasible implementation in a node. In addition, it is used an unequal scheme for the cluster sizes because it has been demonstrated that those methods are more convenient in terms of energy consumption. The simulation results demonstrate the effectiveness of the algorithm to extend the network lifetime.</description><subject>Algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Computer simulation</subject><subject>Data exchange</subject><subject>distributed system</subject><subject>Energy consumption</subject><subject>Estimation</subject><subject>Fuzzy logic</subject><subject>fuzzy system</subject><subject>Fuzzy systems</subject><subject>Knowledge base</subject><subject>Nodes</subject><subject>Remote sensors</subject><subject>Sensors</subject><subject>unequal clustering</subject><subject>Wireless networks</subject><subject>Wireless sensor network</subject><subject>Wireless sensor networks</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kFtLwzAUgIMoOKc_QHwp-NyZkzRp8ji61gtDH9zAt5C26dbRtVvSPmy_3pSJcOBc-M458CH0CHgGgOXLx3f6OSMY5IxIjLGMrtAEGBMhxJG4HmuKw4jGP7fozrkd9mTM4gnK0vUiS4IwSNutbgtTBuvWHAfdBIva9bbOh97PVqeDCUmQDefzKUiawfXG1u0mmDebztb9dn-PbirdOPPwl6donaWr5C1cfr2-J_NlWBBJ-7CguRCGxJGEXGpe0tyH4FVRxroiJWiISUmZZCbneaWxBN_QquJM4IjgiE7R8-XuwXbHwbhe7brBtv6lIoRw4ACCeQouVGE756yp1MHWe21PCrAadalRlxp1qT9dfufpslMbY_55wSMqGae_NCVkrw</recordid><startdate>20190615</startdate><enddate>20190615</enddate><creator>Yuste-Delgado, Antonio Jesus</creator><creator>Cuevas-Martinez, Juan Carlos</creator><creator>Trivino-Cabrera, Alicia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3749-5986</orcidid><orcidid>https://orcid.org/0000-0002-7516-2878</orcidid><orcidid>https://orcid.org/0000-0002-9321-1709</orcidid></search><sort><creationdate>20190615</creationdate><title>EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm</title><author>Yuste-Delgado, Antonio Jesus ; Cuevas-Martinez, Juan Carlos ; Trivino-Cabrera, Alicia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-c3b88e27491b9a6d3bd3b86fcd7af2d1a172d3595eb6bfa0913593ff658042043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Computer simulation</topic><topic>Data exchange</topic><topic>distributed system</topic><topic>Energy consumption</topic><topic>Estimation</topic><topic>Fuzzy logic</topic><topic>fuzzy system</topic><topic>Fuzzy systems</topic><topic>Knowledge base</topic><topic>Nodes</topic><topic>Remote sensors</topic><topic>Sensors</topic><topic>unequal clustering</topic><topic>Wireless networks</topic><topic>Wireless sensor network</topic><topic>Wireless sensor networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuste-Delgado, Antonio Jesus</creatorcontrib><creatorcontrib>Cuevas-Martinez, Juan Carlos</creatorcontrib><creatorcontrib>Trivino-Cabrera, Alicia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuste-Delgado, Antonio Jesus</au><au>Cuevas-Martinez, Juan Carlos</au><au>Trivino-Cabrera, Alicia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2019-06-15</date><risdate>2019</risdate><volume>19</volume><issue>12</issue><spage>4705</spage><epage>4716</epage><pages>4705-4716</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Wireless sensor networks are composed of nodes that monitor the environment and send their measurements to a base station. Due to the reduced computational and energetical resources of the sensor nodes, network organization must take into account those constraints to reduce energy consumption and, in turn, to prolong the lifetime of the network. Thus, collaborative management techniques, like clustering, are usually implemented. This paper proposes a novel unequal distributed clustering algorithm for wireless sensor networks that employs a new set of input variables. Compared with previous works, these variables help for a more accurate estimation of the convenience of a node to be a cluster head. The developed algorithm relies on local information of the sensors to diminish the data exchange, reduce the interference and the consumption of the transmission processes. Because of the underlying uncertainty of the local data, a type-2 fuzzy logic system constitutes the basis of the proposed clustering algorithm whose knowledge base is sampled to allow its feasible implementation in a node. In addition, it is used an unequal scheme for the cluster sizes because it has been demonstrated that those methods are more convenient in terms of energy consumption. The simulation results demonstrate the effectiveness of the algorithm to extend the network lifetime.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2019.2900094</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-3749-5986</orcidid><orcidid>https://orcid.org/0000-0002-7516-2878</orcidid><orcidid>https://orcid.org/0000-0002-9321-1709</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2019-06, Vol.19 (12), p.4705-4716
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_8643956
source IEEE Electronic Library (IEL)
subjects Algorithms
Clustering
Clustering algorithms
Computer simulation
Data exchange
distributed system
Energy consumption
Estimation
Fuzzy logic
fuzzy system
Fuzzy systems
Knowledge base
Nodes
Remote sensors
Sensors
unequal clustering
Wireless networks
Wireless sensor network
Wireless sensor networks
title EUDFC - Enhanced Unequal Distributed Type-2 Fuzzy Clustering Algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A37%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EUDFC%20-%20Enhanced%20Unequal%20Distributed%20Type-2%20Fuzzy%20Clustering%20Algorithm&rft.jtitle=IEEE%20sensors%20journal&rft.au=Yuste-Delgado,%20Antonio%20Jesus&rft.date=2019-06-15&rft.volume=19&rft.issue=12&rft.spage=4705&rft.epage=4716&rft.pages=4705-4716&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2019.2900094&rft_dat=%3Cproquest_RIE%3E2226161185%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2226161185&rft_id=info:pmid/&rft_ieee_id=8643956&rfr_iscdi=true