A Modular Multilevel Voltage-Boosting Marx Pulse-Waveform Generator for Electroporation Applications

In order to overcome the limitations of the existing classical and solid-state Marx pulse generators, this paper proposes a new modular multilevel voltage-boosting Marx pulse generator (BMPG). The proposed BMPG has hardware features that allow modularity, redundancy, and scalability as well as opera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power electronics 2019-11, Vol.34 (11), p.10575-10589
Hauptverfasser: Elgenedy, Mohamed A., Massoud, Ahmed M., Ahmed, Shehab, Williams, Barry W., McDonald, Jim R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 10589
container_issue 11
container_start_page 10575
container_title IEEE transactions on power electronics
container_volume 34
creator Elgenedy, Mohamed A.
Massoud, Ahmed M.
Ahmed, Shehab
Williams, Barry W.
McDonald, Jim R.
description In order to overcome the limitations of the existing classical and solid-state Marx pulse generators, this paper proposes a new modular multilevel voltage-boosting Marx pulse generator (BMPG). The proposed BMPG has hardware features that allow modularity, redundancy, and scalability as well as operational features that alleviate the need of series-connected switches and allows generation of a wide range of pulse waveforms. In the BMPG, a controllable, low-voltage input boost converter supplies, via directing/blocking (D/B) diodes, two arms of a series modular multilevel converter half-bridge sub-modules (HB-SMs). At start up, all the arm's SM capacitors are resonantly charged in parallel from 0 V, simultaneously via directing diodes, to a voltage in excess of the source voltage. After the first pulse delivery, the energy of the SM capacitors decreases due to the generated pulse. Then, for continuous operation without fully discharging the SM capacitors or having a large voltage droop as in the available Marx generators, the SM capacitors are continuously recharged in parallel, to the desired boosted voltage level. Because all SMs are parallelly connected, the boost converter duty ratio is controlled by a single voltage measurement at the output terminals of the boost converter. Due to the proposed SMs structure and the utilization of D/B diodes, each SM capacitor is effectively controlled individually without requiring a voltage sensor across each SM capacitor. Generation of the commonly used pulse waveforms in electroporation applications is possible, while assuring balanced capacitors, hence SM voltages. The proposed BMPG has several topological variations such as utilizing a buck-boost converter at the input stage and replacing the HB-SM with full-bridge SMs. The proposed BMPG topology is assessed by simulation and scaled-down proof-of-concept experimentation to explore its viability for electroporation applications.
doi_str_mv 10.1109/TPEL.2019.2899974
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8643407</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8643407</ieee_id><sourcerecordid>2285327904</sourcerecordid><originalsourceid>FETCH-LOGICAL-c384t-95dd9229e7dded25acfde207478edaf27c367be6a7beee176a22dff11522cad03</originalsourceid><addsrcrecordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZpGnTXM4xp7DiLqZehticjo6sqUk79N-bueHN-Xzfc-BB6JaSCaVEPqxX8-WEESonrJBSCn6GRlRymhBKxDkakaLIkrhJL9FVCFtCKM8IHSEzxaUzg9Uel4PtGwt7sPjd2V5vIHl0LvRNu8Gl9t94NdgAyYfeQ-38Di-gBa9753Fs8dxC1XvXuThqXIunXWeb6q8O1-ii1tF7c8pj9PY0X8-ek-Xr4mU2XSZVWvA-kZkxkjEJwhgwLNNVbYARwUUBRtdMVGkuPiHXMQBQkWvGTF1TmjFWaUPSMbo_3u28-xog9GrrBt_Gl4qxIkuZkIRHFT2qKu9C8FCrzjc77X8UJeoAUx1gqgNMdYIZPXdHTxM__-uLnKeciPQXp2ly7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2285327904</pqid></control><display><type>article</type><title>A Modular Multilevel Voltage-Boosting Marx Pulse-Waveform Generator for Electroporation Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Elgenedy, Mohamed A. ; Massoud, Ahmed M. ; Ahmed, Shehab ; Williams, Barry W. ; McDonald, Jim R.</creator><creatorcontrib>Elgenedy, Mohamed A. ; Massoud, Ahmed M. ; Ahmed, Shehab ; Williams, Barry W. ; McDonald, Jim R.</creatorcontrib><description>In order to overcome the limitations of the existing classical and solid-state Marx pulse generators, this paper proposes a new modular multilevel voltage-boosting Marx pulse generator (BMPG). The proposed BMPG has hardware features that allow modularity, redundancy, and scalability as well as operational features that alleviate the need of series-connected switches and allows generation of a wide range of pulse waveforms. In the BMPG, a controllable, low-voltage input boost converter supplies, via directing/blocking (D/B) diodes, two arms of a series modular multilevel converter half-bridge sub-modules (HB-SMs). At start up, all the arm's SM capacitors are resonantly charged in parallel from 0 V, simultaneously via directing diodes, to a voltage in excess of the source voltage. After the first pulse delivery, the energy of the SM capacitors decreases due to the generated pulse. Then, for continuous operation without fully discharging the SM capacitors or having a large voltage droop as in the available Marx generators, the SM capacitors are continuously recharged in parallel, to the desired boosted voltage level. Because all SMs are parallelly connected, the boost converter duty ratio is controlled by a single voltage measurement at the output terminals of the boost converter. Due to the proposed SMs structure and the utilization of D/B diodes, each SM capacitor is effectively controlled individually without requiring a voltage sensor across each SM capacitor. Generation of the commonly used pulse waveforms in electroporation applications is possible, while assuring balanced capacitors, hence SM voltages. The proposed BMPG has several topological variations such as utilizing a buck-boost converter at the input stage and replacing the HB-SM with full-bridge SMs. The proposed BMPG topology is assessed by simulation and scaled-down proof-of-concept experimentation to explore its viability for electroporation applications.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2019.2899974</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Biomembranes ; Boost ; buck–boost ; Capacitors ; Circuits ; Converters ; Diodes ; Electric bridges ; Electric fields ; Electrical measurement ; Electroporation ; Experimentation ; Generators ; high voltage (HV) ; Marx generator ; Marx generators ; modular multilevel converter (MMC) ; Modularity ; Multilevel ; Pulse generation ; pulse generator (PG) ; Pulse generators ; pulsed electric field ; Redundancy ; Stability ; Start up ; Switches ; Topology ; Viability ; voltage boosting ; Voltage measurement ; Waveform generators ; Waveforms</subject><ispartof>IEEE transactions on power electronics, 2019-11, Vol.34 (11), p.10575-10589</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c384t-95dd9229e7dded25acfde207478edaf27c367be6a7beee176a22dff11522cad03</citedby><cites>FETCH-LOGICAL-c384t-95dd9229e7dded25acfde207478edaf27c367be6a7beee176a22dff11522cad03</cites><orcidid>0000-0002-5629-5616 ; 0000-0001-9343-469X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8643407$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8643407$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Elgenedy, Mohamed A.</creatorcontrib><creatorcontrib>Massoud, Ahmed M.</creatorcontrib><creatorcontrib>Ahmed, Shehab</creatorcontrib><creatorcontrib>Williams, Barry W.</creatorcontrib><creatorcontrib>McDonald, Jim R.</creatorcontrib><title>A Modular Multilevel Voltage-Boosting Marx Pulse-Waveform Generator for Electroporation Applications</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>In order to overcome the limitations of the existing classical and solid-state Marx pulse generators, this paper proposes a new modular multilevel voltage-boosting Marx pulse generator (BMPG). The proposed BMPG has hardware features that allow modularity, redundancy, and scalability as well as operational features that alleviate the need of series-connected switches and allows generation of a wide range of pulse waveforms. In the BMPG, a controllable, low-voltage input boost converter supplies, via directing/blocking (D/B) diodes, two arms of a series modular multilevel converter half-bridge sub-modules (HB-SMs). At start up, all the arm's SM capacitors are resonantly charged in parallel from 0 V, simultaneously via directing diodes, to a voltage in excess of the source voltage. After the first pulse delivery, the energy of the SM capacitors decreases due to the generated pulse. Then, for continuous operation without fully discharging the SM capacitors or having a large voltage droop as in the available Marx generators, the SM capacitors are continuously recharged in parallel, to the desired boosted voltage level. Because all SMs are parallelly connected, the boost converter duty ratio is controlled by a single voltage measurement at the output terminals of the boost converter. Due to the proposed SMs structure and the utilization of D/B diodes, each SM capacitor is effectively controlled individually without requiring a voltage sensor across each SM capacitor. Generation of the commonly used pulse waveforms in electroporation applications is possible, while assuring balanced capacitors, hence SM voltages. The proposed BMPG has several topological variations such as utilizing a buck-boost converter at the input stage and replacing the HB-SM with full-bridge SMs. The proposed BMPG topology is assessed by simulation and scaled-down proof-of-concept experimentation to explore its viability for electroporation applications.</description><subject>Biomembranes</subject><subject>Boost</subject><subject>buck–boost</subject><subject>Capacitors</subject><subject>Circuits</subject><subject>Converters</subject><subject>Diodes</subject><subject>Electric bridges</subject><subject>Electric fields</subject><subject>Electrical measurement</subject><subject>Electroporation</subject><subject>Experimentation</subject><subject>Generators</subject><subject>high voltage (HV)</subject><subject>Marx generator</subject><subject>Marx generators</subject><subject>modular multilevel converter (MMC)</subject><subject>Modularity</subject><subject>Multilevel</subject><subject>Pulse generation</subject><subject>pulse generator (PG)</subject><subject>Pulse generators</subject><subject>pulsed electric field</subject><subject>Redundancy</subject><subject>Stability</subject><subject>Start up</subject><subject>Switches</subject><subject>Topology</subject><subject>Viability</subject><subject>voltage boosting</subject><subject>Voltage measurement</subject><subject>Waveform generators</subject><subject>Waveforms</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kF1LwzAUhoMoOKc_QLwJeN2ZpGnTXM4xp7DiLqZehticjo6sqUk79N-bueHN-Xzfc-BB6JaSCaVEPqxX8-WEESonrJBSCn6GRlRymhBKxDkakaLIkrhJL9FVCFtCKM8IHSEzxaUzg9Uel4PtGwt7sPjd2V5vIHl0LvRNu8Gl9t94NdgAyYfeQ-38Di-gBa9753Fs8dxC1XvXuThqXIunXWeb6q8O1-ii1tF7c8pj9PY0X8-ek-Xr4mU2XSZVWvA-kZkxkjEJwhgwLNNVbYARwUUBRtdMVGkuPiHXMQBQkWvGTF1TmjFWaUPSMbo_3u28-xog9GrrBt_Gl4qxIkuZkIRHFT2qKu9C8FCrzjc77X8UJeoAUx1gqgNMdYIZPXdHTxM__-uLnKeciPQXp2ly7Q</recordid><startdate>20191101</startdate><enddate>20191101</enddate><creator>Elgenedy, Mohamed A.</creator><creator>Massoud, Ahmed M.</creator><creator>Ahmed, Shehab</creator><creator>Williams, Barry W.</creator><creator>McDonald, Jim R.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-5629-5616</orcidid><orcidid>https://orcid.org/0000-0001-9343-469X</orcidid></search><sort><creationdate>20191101</creationdate><title>A Modular Multilevel Voltage-Boosting Marx Pulse-Waveform Generator for Electroporation Applications</title><author>Elgenedy, Mohamed A. ; Massoud, Ahmed M. ; Ahmed, Shehab ; Williams, Barry W. ; McDonald, Jim R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c384t-95dd9229e7dded25acfde207478edaf27c367be6a7beee176a22dff11522cad03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Biomembranes</topic><topic>Boost</topic><topic>buck–boost</topic><topic>Capacitors</topic><topic>Circuits</topic><topic>Converters</topic><topic>Diodes</topic><topic>Electric bridges</topic><topic>Electric fields</topic><topic>Electrical measurement</topic><topic>Electroporation</topic><topic>Experimentation</topic><topic>Generators</topic><topic>high voltage (HV)</topic><topic>Marx generator</topic><topic>Marx generators</topic><topic>modular multilevel converter (MMC)</topic><topic>Modularity</topic><topic>Multilevel</topic><topic>Pulse generation</topic><topic>pulse generator (PG)</topic><topic>Pulse generators</topic><topic>pulsed electric field</topic><topic>Redundancy</topic><topic>Stability</topic><topic>Start up</topic><topic>Switches</topic><topic>Topology</topic><topic>Viability</topic><topic>voltage boosting</topic><topic>Voltage measurement</topic><topic>Waveform generators</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Elgenedy, Mohamed A.</creatorcontrib><creatorcontrib>Massoud, Ahmed M.</creatorcontrib><creatorcontrib>Ahmed, Shehab</creatorcontrib><creatorcontrib>Williams, Barry W.</creatorcontrib><creatorcontrib>McDonald, Jim R.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Elgenedy, Mohamed A.</au><au>Massoud, Ahmed M.</au><au>Ahmed, Shehab</au><au>Williams, Barry W.</au><au>McDonald, Jim R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Modular Multilevel Voltage-Boosting Marx Pulse-Waveform Generator for Electroporation Applications</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2019-11-01</date><risdate>2019</risdate><volume>34</volume><issue>11</issue><spage>10575</spage><epage>10589</epage><pages>10575-10589</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>In order to overcome the limitations of the existing classical and solid-state Marx pulse generators, this paper proposes a new modular multilevel voltage-boosting Marx pulse generator (BMPG). The proposed BMPG has hardware features that allow modularity, redundancy, and scalability as well as operational features that alleviate the need of series-connected switches and allows generation of a wide range of pulse waveforms. In the BMPG, a controllable, low-voltage input boost converter supplies, via directing/blocking (D/B) diodes, two arms of a series modular multilevel converter half-bridge sub-modules (HB-SMs). At start up, all the arm's SM capacitors are resonantly charged in parallel from 0 V, simultaneously via directing diodes, to a voltage in excess of the source voltage. After the first pulse delivery, the energy of the SM capacitors decreases due to the generated pulse. Then, for continuous operation without fully discharging the SM capacitors or having a large voltage droop as in the available Marx generators, the SM capacitors are continuously recharged in parallel, to the desired boosted voltage level. Because all SMs are parallelly connected, the boost converter duty ratio is controlled by a single voltage measurement at the output terminals of the boost converter. Due to the proposed SMs structure and the utilization of D/B diodes, each SM capacitor is effectively controlled individually without requiring a voltage sensor across each SM capacitor. Generation of the commonly used pulse waveforms in electroporation applications is possible, while assuring balanced capacitors, hence SM voltages. The proposed BMPG has several topological variations such as utilizing a buck-boost converter at the input stage and replacing the HB-SM with full-bridge SMs. The proposed BMPG topology is assessed by simulation and scaled-down proof-of-concept experimentation to explore its viability for electroporation applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2019.2899974</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-5629-5616</orcidid><orcidid>https://orcid.org/0000-0001-9343-469X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2019-11, Vol.34 (11), p.10575-10589
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_8643407
source IEEE Electronic Library (IEL)
subjects Biomembranes
Boost
buck–boost
Capacitors
Circuits
Converters
Diodes
Electric bridges
Electric fields
Electrical measurement
Electroporation
Experimentation
Generators
high voltage (HV)
Marx generator
Marx generators
modular multilevel converter (MMC)
Modularity
Multilevel
Pulse generation
pulse generator (PG)
Pulse generators
pulsed electric field
Redundancy
Stability
Start up
Switches
Topology
Viability
voltage boosting
Voltage measurement
Waveform generators
Waveforms
title A Modular Multilevel Voltage-Boosting Marx Pulse-Waveform Generator for Electroporation Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T18%3A55%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Modular%20Multilevel%20Voltage-Boosting%20Marx%20Pulse-Waveform%20Generator%20for%20Electroporation%20Applications&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Elgenedy,%20Mohamed%20A.&rft.date=2019-11-01&rft.volume=34&rft.issue=11&rft.spage=10575&rft.epage=10589&rft.pages=10575-10589&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2019.2899974&rft_dat=%3Cproquest_RIE%3E2285327904%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2285327904&rft_id=info:pmid/&rft_ieee_id=8643407&rfr_iscdi=true