Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm
Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nanotechnology 2019, Vol.18, p.240-251 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 251 |
---|---|
container_issue | |
container_start_page | 240 |
container_title | IEEE transactions on nanotechnology |
container_volume | 18 |
creator | Song, Taigon |
description | Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However, it is not well studied on how much improvements NWFETs can achieve, especially when vertical FETs (V-NWFETs) are invoked in designs. In this paper, we investigate the advantages that NWFETs provide to standard cell designs. We propose an interconnect structure and a design methodology that optimize design metrics such as area, wirelength, and capacitance of V-NWFET standard cells. Then, we perform comparisons on these design metrics to standard cells between FinFET, horizontal NWFET (H-NWFET), and V-NWFET. This study shows that H-NWFETs achieve significant capacitance reduction compared to the conventional FinFETs (-30.1%). In addition, V-NWFETs achieve even more capacitance reduction (-50.0%), and significant reduction in area (-22.5%) and wirelength (-14.4%) compared to FinFETs. This is possible because (1) fin-to-metal coupling consists of a significant portion in total capacitance and NWFETs contribute to the large reduction of this capacitance and (2) standard cells using V-NWFETs reduce significant area and wirelength compared to conventional FinFET standard cells. However, careful design and proper interconnect structure are required to fully exploit the design advantages. |
doi_str_mv | 10.1109/TNANO.2019.2896362 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8642525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8642525</ieee_id><sourcerecordid>2185733221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d448ed200ca1614bd443b90163323e2cb91989176e510ed51b4c04406f108223</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIlMIPwMUSFzikeJ3YtY-lPCWUHiiFW5THprhKnWCnoPL1uA9x2hntzKx2guAc6ACAqptpMkomA0ZBDZhUIhLsIOiBiiGkVPJDj3kkQmD84zg4cW5BKQwFl73ge9K2je1WRncaHclMScafWV2jmXuqDblDp-dGm_l299bpWv9u2Axtp4usJklmmh9tkTzcT8nVLEzePbgmr53XZ9bHYV07UjWW3OK68RmcmOVpcFRltcOz_ewHU-8aP4Uvk8fn8eglLJjiXVjGscSSUVpkICDOPY9yRUFEEYuQFbkCJZV_BTlQLDnkcUHjmIoKqGQs6geXu9jWNl8rdF26aFbW-IspA8mHPoaBV7GdqrCNcxartLV6mdl1CjTd1Jtu60039ab7er3pYmfSiPhvkCJmnPHoD7x9dIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185733221</pqid></control><display><type>article</type><title>Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Taigon</creator><creatorcontrib>Song, Taigon</creatorcontrib><description>Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However, it is not well studied on how much improvements NWFETs can achieve, especially when vertical FETs (V-NWFETs) are invoked in designs. In this paper, we investigate the advantages that NWFETs provide to standard cell designs. We propose an interconnect structure and a design methodology that optimize design metrics such as area, wirelength, and capacitance of V-NWFET standard cells. Then, we perform comparisons on these design metrics to standard cells between FinFET, horizontal NWFET (H-NWFET), and V-NWFET. This study shows that H-NWFETs achieve significant capacitance reduction compared to the conventional FinFETs (-30.1%). In addition, V-NWFETs achieve even more capacitance reduction (-50.0%), and significant reduction in area (-22.5%) and wirelength (-14.4%) compared to FinFETs. This is possible because (1) fin-to-metal coupling consists of a significant portion in total capacitance and NWFETs contribute to the large reduction of this capacitance and (2) standard cells using V-NWFETs reduce significant area and wirelength compared to conventional FinFET standard cells. However, careful design and proper interconnect structure are required to fully exploit the design advantages.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2019.2896362</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Design ; design automation ; Design optimization ; Design standards ; Field effect transistors ; FinFETs ; Form factors ; Layout ; Logic gates ; Manufacturing cells ; Nanowire FET (NWFET) ; Nanowires ; Parasitic capacitance ; parasitics ; Reduction ; Semiconductor devices ; standard cells ; Transistors</subject><ispartof>IEEE transactions on nanotechnology, 2019, Vol.18, p.240-251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d448ed200ca1614bd443b90163323e2cb91989176e510ed51b4c04406f108223</citedby><cites>FETCH-LOGICAL-c295t-d448ed200ca1614bd443b90163323e2cb91989176e510ed51b4c04406f108223</cites><orcidid>0000-0001-5243-4132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8642525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8642525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Taigon</creatorcontrib><title>Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However, it is not well studied on how much improvements NWFETs can achieve, especially when vertical FETs (V-NWFETs) are invoked in designs. In this paper, we investigate the advantages that NWFETs provide to standard cell designs. We propose an interconnect structure and a design methodology that optimize design metrics such as area, wirelength, and capacitance of V-NWFET standard cells. Then, we perform comparisons on these design metrics to standard cells between FinFET, horizontal NWFET (H-NWFET), and V-NWFET. This study shows that H-NWFETs achieve significant capacitance reduction compared to the conventional FinFETs (-30.1%). In addition, V-NWFETs achieve even more capacitance reduction (-50.0%), and significant reduction in area (-22.5%) and wirelength (-14.4%) compared to FinFETs. This is possible because (1) fin-to-metal coupling consists of a significant portion in total capacitance and NWFETs contribute to the large reduction of this capacitance and (2) standard cells using V-NWFETs reduce significant area and wirelength compared to conventional FinFET standard cells. However, careful design and proper interconnect structure are required to fully exploit the design advantages.</description><subject>Capacitance</subject><subject>Design</subject><subject>design automation</subject><subject>Design optimization</subject><subject>Design standards</subject><subject>Field effect transistors</subject><subject>FinFETs</subject><subject>Form factors</subject><subject>Layout</subject><subject>Logic gates</subject><subject>Manufacturing cells</subject><subject>Nanowire FET (NWFET)</subject><subject>Nanowires</subject><subject>Parasitic capacitance</subject><subject>parasitics</subject><subject>Reduction</subject><subject>Semiconductor devices</subject><subject>standard cells</subject><subject>Transistors</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQjBBIlMIPwMUSFzikeJ3YtY-lPCWUHiiFW5THprhKnWCnoPL1uA9x2hntzKx2guAc6ACAqptpMkomA0ZBDZhUIhLsIOiBiiGkVPJDj3kkQmD84zg4cW5BKQwFl73ge9K2je1WRncaHclMScafWV2jmXuqDblDp-dGm_l299bpWv9u2Axtp4usJklmmh9tkTzcT8nVLEzePbgmr53XZ9bHYV07UjWW3OK68RmcmOVpcFRltcOz_ewHU-8aP4Uvk8fn8eglLJjiXVjGscSSUVpkICDOPY9yRUFEEYuQFbkCJZV_BTlQLDnkcUHjmIoKqGQs6geXu9jWNl8rdF26aFbW-IspA8mHPoaBV7GdqrCNcxartLV6mdl1CjTd1Jtu60039ab7er3pYmfSiPhvkCJmnPHoD7x9dIA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Song, Taigon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5243-4132</orcidid></search><sort><creationdate>2019</creationdate><title>Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm</title><author>Song, Taigon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d448ed200ca1614bd443b90163323e2cb91989176e510ed51b4c04406f108223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capacitance</topic><topic>Design</topic><topic>design automation</topic><topic>Design optimization</topic><topic>Design standards</topic><topic>Field effect transistors</topic><topic>FinFETs</topic><topic>Form factors</topic><topic>Layout</topic><topic>Logic gates</topic><topic>Manufacturing cells</topic><topic>Nanowire FET (NWFET)</topic><topic>Nanowires</topic><topic>Parasitic capacitance</topic><topic>parasitics</topic><topic>Reduction</topic><topic>Semiconductor devices</topic><topic>standard cells</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Taigon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Taigon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2019</date><risdate>2019</risdate><volume>18</volume><spage>240</spage><epage>251</epage><pages>240-251</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However, it is not well studied on how much improvements NWFETs can achieve, especially when vertical FETs (V-NWFETs) are invoked in designs. In this paper, we investigate the advantages that NWFETs provide to standard cell designs. We propose an interconnect structure and a design methodology that optimize design metrics such as area, wirelength, and capacitance of V-NWFET standard cells. Then, we perform comparisons on these design metrics to standard cells between FinFET, horizontal NWFET (H-NWFET), and V-NWFET. This study shows that H-NWFETs achieve significant capacitance reduction compared to the conventional FinFETs (-30.1%). In addition, V-NWFETs achieve even more capacitance reduction (-50.0%), and significant reduction in area (-22.5%) and wirelength (-14.4%) compared to FinFETs. This is possible because (1) fin-to-metal coupling consists of a significant portion in total capacitance and NWFETs contribute to the large reduction of this capacitance and (2) standard cells using V-NWFETs reduce significant area and wirelength compared to conventional FinFET standard cells. However, careful design and proper interconnect structure are required to fully exploit the design advantages.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2019.2896362</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5243-4132</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2019, Vol.18, p.240-251 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_ieee_primary_8642525 |
source | IEEE Electronic Library (IEL) |
subjects | Capacitance Design design automation Design optimization Design standards Field effect transistors FinFETs Form factors Layout Logic gates Manufacturing cells Nanowire FET (NWFET) Nanowires Parasitic capacitance parasitics Reduction Semiconductor devices standard cells Transistors |
title | Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opportunities%20and%20Challenges%20in%20Designing%20and%20Utilizing%20Vertical%20Nanowire%20FET%20(V-NWFET)%20Standard%20Cells%20for%20Beyond%205%20nm&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Song,%20Taigon&rft.date=2019&rft.volume=18&rft.spage=240&rft.epage=251&rft.pages=240-251&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2019.2896362&rft_dat=%3Cproquest_RIE%3E2185733221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185733221&rft_id=info:pmid/&rft_ieee_id=8642525&rfr_iscdi=true |