Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm

Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on nanotechnology 2019, Vol.18, p.240-251
1. Verfasser: Song, Taigon
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 251
container_issue
container_start_page 240
container_title IEEE transactions on nanotechnology
container_volume 18
creator Song, Taigon
description Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However, it is not well studied on how much improvements NWFETs can achieve, especially when vertical FETs (V-NWFETs) are invoked in designs. In this paper, we investigate the advantages that NWFETs provide to standard cell designs. We propose an interconnect structure and a design methodology that optimize design metrics such as area, wirelength, and capacitance of V-NWFET standard cells. Then, we perform comparisons on these design metrics to standard cells between FinFET, horizontal NWFET (H-NWFET), and V-NWFET. This study shows that H-NWFETs achieve significant capacitance reduction compared to the conventional FinFETs (-30.1%). In addition, V-NWFETs achieve even more capacitance reduction (-50.0%), and significant reduction in area (-22.5%) and wirelength (-14.4%) compared to FinFETs. This is possible because (1) fin-to-metal coupling consists of a significant portion in total capacitance and NWFETs contribute to the large reduction of this capacitance and (2) standard cells using V-NWFETs reduce significant area and wirelength compared to conventional FinFET standard cells. However, careful design and proper interconnect structure are required to fully exploit the design advantages.
doi_str_mv 10.1109/TNANO.2019.2896362
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8642525</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8642525</ieee_id><sourcerecordid>2185733221</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-d448ed200ca1614bd443b90163323e2cb91989176e510ed51b4c04406f108223</originalsourceid><addsrcrecordid>eNo9UMtOwzAQjBBIlMIPwMUSFzikeJ3YtY-lPCWUHiiFW5THprhKnWCnoPL1uA9x2hntzKx2guAc6ACAqptpMkomA0ZBDZhUIhLsIOiBiiGkVPJDj3kkQmD84zg4cW5BKQwFl73ge9K2je1WRncaHclMScafWV2jmXuqDblDp-dGm_l299bpWv9u2Axtp4usJklmmh9tkTzcT8nVLEzePbgmr53XZ9bHYV07UjWW3OK68RmcmOVpcFRltcOz_ewHU-8aP4Uvk8fn8eglLJjiXVjGscSSUVpkICDOPY9yRUFEEYuQFbkCJZV_BTlQLDnkcUHjmIoKqGQs6geXu9jWNl8rdF26aFbW-IspA8mHPoaBV7GdqrCNcxartLV6mdl1CjTd1Jtu60039ab7er3pYmfSiPhvkCJmnPHoD7x9dIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2185733221</pqid></control><display><type>article</type><title>Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm</title><source>IEEE Electronic Library (IEL)</source><creator>Song, Taigon</creator><creatorcontrib>Song, Taigon</creatorcontrib><description>Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However, it is not well studied on how much improvements NWFETs can achieve, especially when vertical FETs (V-NWFETs) are invoked in designs. In this paper, we investigate the advantages that NWFETs provide to standard cell designs. We propose an interconnect structure and a design methodology that optimize design metrics such as area, wirelength, and capacitance of V-NWFET standard cells. Then, we perform comparisons on these design metrics to standard cells between FinFET, horizontal NWFET (H-NWFET), and V-NWFET. This study shows that H-NWFETs achieve significant capacitance reduction compared to the conventional FinFETs (-30.1%). In addition, V-NWFETs achieve even more capacitance reduction (-50.0%), and significant reduction in area (-22.5%) and wirelength (-14.4%) compared to FinFETs. This is possible because (1) fin-to-metal coupling consists of a significant portion in total capacitance and NWFETs contribute to the large reduction of this capacitance and (2) standard cells using V-NWFETs reduce significant area and wirelength compared to conventional FinFET standard cells. However, careful design and proper interconnect structure are required to fully exploit the design advantages.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2019.2896362</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Design ; design automation ; Design optimization ; Design standards ; Field effect transistors ; FinFETs ; Form factors ; Layout ; Logic gates ; Manufacturing cells ; Nanowire FET (NWFET) ; Nanowires ; Parasitic capacitance ; parasitics ; Reduction ; Semiconductor devices ; standard cells ; Transistors</subject><ispartof>IEEE transactions on nanotechnology, 2019, Vol.18, p.240-251</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-d448ed200ca1614bd443b90163323e2cb91989176e510ed51b4c04406f108223</citedby><cites>FETCH-LOGICAL-c295t-d448ed200ca1614bd443b90163323e2cb91989176e510ed51b4c04406f108223</cites><orcidid>0000-0001-5243-4132</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8642525$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,4010,27900,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8642525$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Taigon</creatorcontrib><title>Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However, it is not well studied on how much improvements NWFETs can achieve, especially when vertical FETs (V-NWFETs) are invoked in designs. In this paper, we investigate the advantages that NWFETs provide to standard cell designs. We propose an interconnect structure and a design methodology that optimize design metrics such as area, wirelength, and capacitance of V-NWFET standard cells. Then, we perform comparisons on these design metrics to standard cells between FinFET, horizontal NWFET (H-NWFET), and V-NWFET. This study shows that H-NWFETs achieve significant capacitance reduction compared to the conventional FinFETs (-30.1%). In addition, V-NWFETs achieve even more capacitance reduction (-50.0%), and significant reduction in area (-22.5%) and wirelength (-14.4%) compared to FinFETs. This is possible because (1) fin-to-metal coupling consists of a significant portion in total capacitance and NWFETs contribute to the large reduction of this capacitance and (2) standard cells using V-NWFETs reduce significant area and wirelength compared to conventional FinFET standard cells. However, careful design and proper interconnect structure are required to fully exploit the design advantages.</description><subject>Capacitance</subject><subject>Design</subject><subject>design automation</subject><subject>Design optimization</subject><subject>Design standards</subject><subject>Field effect transistors</subject><subject>FinFETs</subject><subject>Form factors</subject><subject>Layout</subject><subject>Logic gates</subject><subject>Manufacturing cells</subject><subject>Nanowire FET (NWFET)</subject><subject>Nanowires</subject><subject>Parasitic capacitance</subject><subject>parasitics</subject><subject>Reduction</subject><subject>Semiconductor devices</subject><subject>standard cells</subject><subject>Transistors</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9UMtOwzAQjBBIlMIPwMUSFzikeJ3YtY-lPCWUHiiFW5THprhKnWCnoPL1uA9x2hntzKx2guAc6ACAqptpMkomA0ZBDZhUIhLsIOiBiiGkVPJDj3kkQmD84zg4cW5BKQwFl73ge9K2je1WRncaHclMScafWV2jmXuqDblDp-dGm_l299bpWv9u2Axtp4usJklmmh9tkTzcT8nVLEzePbgmr53XZ9bHYV07UjWW3OK68RmcmOVpcFRltcOz_ewHU-8aP4Uvk8fn8eglLJjiXVjGscSSUVpkICDOPY9yRUFEEYuQFbkCJZV_BTlQLDnkcUHjmIoKqGQs6geXu9jWNl8rdF26aFbW-IspA8mHPoaBV7GdqrCNcxartLV6mdl1CjTd1Jtu60039ab7er3pYmfSiPhvkCJmnPHoD7x9dIA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Song, Taigon</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5243-4132</orcidid></search><sort><creationdate>2019</creationdate><title>Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm</title><author>Song, Taigon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-d448ed200ca1614bd443b90163323e2cb91989176e510ed51b4c04406f108223</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Capacitance</topic><topic>Design</topic><topic>design automation</topic><topic>Design optimization</topic><topic>Design standards</topic><topic>Field effect transistors</topic><topic>FinFETs</topic><topic>Form factors</topic><topic>Layout</topic><topic>Logic gates</topic><topic>Manufacturing cells</topic><topic>Nanowire FET (NWFET)</topic><topic>Nanowires</topic><topic>Parasitic capacitance</topic><topic>parasitics</topic><topic>Reduction</topic><topic>Semiconductor devices</topic><topic>standard cells</topic><topic>Transistors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Song, Taigon</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Taigon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2019</date><risdate>2019</risdate><volume>18</volume><spage>240</spage><epage>251</epage><pages>240-251</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Nanowire field-effect transistors (NWFETs) are known to become the emerging transistor type for better performance and low power for future technology nodes beyond 7 nm. Their unique structures allow the transistors to be designed horizontally or vertically, leading to a smaller form factor. However, it is not well studied on how much improvements NWFETs can achieve, especially when vertical FETs (V-NWFETs) are invoked in designs. In this paper, we investigate the advantages that NWFETs provide to standard cell designs. We propose an interconnect structure and a design methodology that optimize design metrics such as area, wirelength, and capacitance of V-NWFET standard cells. Then, we perform comparisons on these design metrics to standard cells between FinFET, horizontal NWFET (H-NWFET), and V-NWFET. This study shows that H-NWFETs achieve significant capacitance reduction compared to the conventional FinFETs (-30.1%). In addition, V-NWFETs achieve even more capacitance reduction (-50.0%), and significant reduction in area (-22.5%) and wirelength (-14.4%) compared to FinFETs. This is possible because (1) fin-to-metal coupling consists of a significant portion in total capacitance and NWFETs contribute to the large reduction of this capacitance and (2) standard cells using V-NWFETs reduce significant area and wirelength compared to conventional FinFET standard cells. However, careful design and proper interconnect structure are required to fully exploit the design advantages.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2019.2896362</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-5243-4132</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2019, Vol.18, p.240-251
issn 1536-125X
1941-0085
language eng
recordid cdi_ieee_primary_8642525
source IEEE Electronic Library (IEL)
subjects Capacitance
Design
design automation
Design optimization
Design standards
Field effect transistors
FinFETs
Form factors
Layout
Logic gates
Manufacturing cells
Nanowire FET (NWFET)
Nanowires
Parasitic capacitance
parasitics
Reduction
Semiconductor devices
standard cells
Transistors
title Opportunities and Challenges in Designing and Utilizing Vertical Nanowire FET (V-NWFET) Standard Cells for Beyond 5 nm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T02%3A05%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Opportunities%20and%20Challenges%20in%20Designing%20and%20Utilizing%20Vertical%20Nanowire%20FET%20(V-NWFET)%20Standard%20Cells%20for%20Beyond%205%20nm&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Song,%20Taigon&rft.date=2019&rft.volume=18&rft.spage=240&rft.epage=251&rft.pages=240-251&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2019.2896362&rft_dat=%3Cproquest_RIE%3E2185733221%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2185733221&rft_id=info:pmid/&rft_ieee_id=8642525&rfr_iscdi=true