Smart Transformer-Based Single Phase-To-Neutral Fault Management

The smart transformer (ST), with its high control capability, offers new features for optimizing the management of the distribution grid. The ST, by controlling the voltage in each phase independently, is able to manage the operations during grid faults, in particular in the single-phase ones. The S...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power delivery 2019-06, Vol.34 (3), p.1049-1059
Hauptverfasser: De Carne, Giovanni, Langwasser, Marius, Zhu, Rongwu, Liserre, Marco
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1059
container_issue 3
container_start_page 1049
container_title IEEE transactions on power delivery
container_volume 34
creator De Carne, Giovanni
Langwasser, Marius
Zhu, Rongwu
Liserre, Marco
description The smart transformer (ST), with its high control capability, offers new features for optimizing the management of the distribution grid. The ST, by controlling the voltage in each phase independently, is able to manage the operations during grid faults, in particular in the single-phase ones. The ST, when a single-phase-to-ground fault occurs, can rapidly reduce the voltage in the phase under fault. Thus, it guarantees system safety and operates with the remaining two healthy phases to avoid unnecessary interruption in the healthy lines. However, the two-phase asymmetrical operation challenges the system performances due to the high power 2nd harmonic ripple in the dc voltage, that reduces the capacitors, lifespan and the high current flowing in the neutral conductor. These issues would force the grid operator to increase the ST maintenance, in order to avoid unplanned faults in the ST hardware, due to failure of aged capacitors. This paper presents a flexible-control strategy, based on the phase-shift angle control between two healthy-phase voltages, that reduces the impact of the power 2nd harmonic oscillation and thus can delay the maintenance intervention. The proposed strategy aims to improve system performances by avoiding neutral-line current overload and attenuating ac side active power (low voltage dc-link voltage) oscillation. Depending on the grid conditions (small dc link capacitance or low ampacity of neutral cable), the voltage angle can be adapted, minimizing the impact of the two-phase operation system in the ST-fed grid. The effectiveness and feasibility of the proposed approach have been validated experimentally with a simplified microgrid setup.
doi_str_mv 10.1109/TPWRD.2019.2899518
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8642327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8642327</ieee_id><sourcerecordid>2230771063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-b4538c12d4acfe93298fc001e8978c90c46699615261d488aec825a9b3a22a843</originalsourceid><addsrcrecordid>eNo9kE1PwkAQhjdGExH9A3pp4nlx9qPtzs1P1ASVSI3HzbJMEQIt7rYH_71FiKfJJO8zHw9j5wIGQgBeFePP9_uBBIEDaRBTYQ5YT6DKuZZgDlkPjEm5wTw_ZicxLgFAA0KPXU_WLjRJEVwVyzqsKfBbF2mWTBbVfEXJ-KvreFHzV2qb4FbJ0LWrJnlxlZvTmqrmlB2VbhXpbF_77GP4UNw98dHb4_PdzYh7pbDhU50q44WcaedLQiXRlB5AUHeT8QheZxliJlKZiZk2xpE3MnU4VU5KZ7Tqs8vd3E2ov1uKjV3Wbai6lVZKBXkuIFNdSu5SPtQxBirtJiy6D3-sALs1Zf9M2a0puzfVQRc7aEFE_4DJtFQyV7-9S2NG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2230771063</pqid></control><display><type>article</type><title>Smart Transformer-Based Single Phase-To-Neutral Fault Management</title><source>IEEE Electronic Library (IEL)</source><creator>De Carne, Giovanni ; Langwasser, Marius ; Zhu, Rongwu ; Liserre, Marco</creator><creatorcontrib>De Carne, Giovanni ; Langwasser, Marius ; Zhu, Rongwu ; Liserre, Marco</creatorcontrib><description>The smart transformer (ST), with its high control capability, offers new features for optimizing the management of the distribution grid. The ST, by controlling the voltage in each phase independently, is able to manage the operations during grid faults, in particular in the single-phase ones. The ST, when a single-phase-to-ground fault occurs, can rapidly reduce the voltage in the phase under fault. Thus, it guarantees system safety and operates with the remaining two healthy phases to avoid unnecessary interruption in the healthy lines. However, the two-phase asymmetrical operation challenges the system performances due to the high power 2nd harmonic ripple in the dc voltage, that reduces the capacitors, lifespan and the high current flowing in the neutral conductor. These issues would force the grid operator to increase the ST maintenance, in order to avoid unplanned faults in the ST hardware, due to failure of aged capacitors. This paper presents a flexible-control strategy, based on the phase-shift angle control between two healthy-phase voltages, that reduces the impact of the power 2nd harmonic oscillation and thus can delay the maintenance intervention. The proposed strategy aims to improve system performances by avoiding neutral-line current overload and attenuating ac side active power (low voltage dc-link voltage) oscillation. Depending on the grid conditions (small dc link capacitance or low ampacity of neutral cable), the voltage angle can be adapted, minimizing the impact of the two-phase operation system in the ST-fed grid. The effectiveness and feasibility of the proposed approach have been validated experimentally with a simplified microgrid setup.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/TPWRD.2019.2899518</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Alternating current ; Capacitors ; Conductors ; DC-link capacitor lifetime ; Distributed generation ; Harmonic analysis ; Harmonic oscillation ; Line current ; Low voltage ; Maintenance engineering ; Neutral conductors ; neutral current ; Oscillators ; Performance enhancement ; Phase transitions ; Power system harmonics ; single-phase-to-neutral faults ; smart transformer ; Transformers ; two-phase operation ; Voltage control</subject><ispartof>IEEE transactions on power delivery, 2019-06, Vol.34 (3), p.1049-1059</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-b4538c12d4acfe93298fc001e8978c90c46699615261d488aec825a9b3a22a843</citedby><cites>FETCH-LOGICAL-c339t-b4538c12d4acfe93298fc001e8978c90c46699615261d488aec825a9b3a22a843</cites><orcidid>0000-0002-3700-2902 ; 0000-0001-9909-7516 ; 0000-0002-8030-4738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8642327$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8642327$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>De Carne, Giovanni</creatorcontrib><creatorcontrib>Langwasser, Marius</creatorcontrib><creatorcontrib>Zhu, Rongwu</creatorcontrib><creatorcontrib>Liserre, Marco</creatorcontrib><title>Smart Transformer-Based Single Phase-To-Neutral Fault Management</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>The smart transformer (ST), with its high control capability, offers new features for optimizing the management of the distribution grid. The ST, by controlling the voltage in each phase independently, is able to manage the operations during grid faults, in particular in the single-phase ones. The ST, when a single-phase-to-ground fault occurs, can rapidly reduce the voltage in the phase under fault. Thus, it guarantees system safety and operates with the remaining two healthy phases to avoid unnecessary interruption in the healthy lines. However, the two-phase asymmetrical operation challenges the system performances due to the high power 2nd harmonic ripple in the dc voltage, that reduces the capacitors, lifespan and the high current flowing in the neutral conductor. These issues would force the grid operator to increase the ST maintenance, in order to avoid unplanned faults in the ST hardware, due to failure of aged capacitors. This paper presents a flexible-control strategy, based on the phase-shift angle control between two healthy-phase voltages, that reduces the impact of the power 2nd harmonic oscillation and thus can delay the maintenance intervention. The proposed strategy aims to improve system performances by avoiding neutral-line current overload and attenuating ac side active power (low voltage dc-link voltage) oscillation. Depending on the grid conditions (small dc link capacitance or low ampacity of neutral cable), the voltage angle can be adapted, minimizing the impact of the two-phase operation system in the ST-fed grid. The effectiveness and feasibility of the proposed approach have been validated experimentally with a simplified microgrid setup.</description><subject>Alternating current</subject><subject>Capacitors</subject><subject>Conductors</subject><subject>DC-link capacitor lifetime</subject><subject>Distributed generation</subject><subject>Harmonic analysis</subject><subject>Harmonic oscillation</subject><subject>Line current</subject><subject>Low voltage</subject><subject>Maintenance engineering</subject><subject>Neutral conductors</subject><subject>neutral current</subject><subject>Oscillators</subject><subject>Performance enhancement</subject><subject>Phase transitions</subject><subject>Power system harmonics</subject><subject>single-phase-to-neutral faults</subject><subject>smart transformer</subject><subject>Transformers</subject><subject>two-phase operation</subject><subject>Voltage control</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1PwkAQhjdGExH9A3pp4nlx9qPtzs1P1ASVSI3HzbJMEQIt7rYH_71FiKfJJO8zHw9j5wIGQgBeFePP9_uBBIEDaRBTYQ5YT6DKuZZgDlkPjEm5wTw_ZicxLgFAA0KPXU_WLjRJEVwVyzqsKfBbF2mWTBbVfEXJ-KvreFHzV2qb4FbJ0LWrJnlxlZvTmqrmlB2VbhXpbF_77GP4UNw98dHb4_PdzYh7pbDhU50q44WcaedLQiXRlB5AUHeT8QheZxliJlKZiZk2xpE3MnU4VU5KZ7Tqs8vd3E2ov1uKjV3Wbai6lVZKBXkuIFNdSu5SPtQxBirtJiy6D3-sALs1Zf9M2a0puzfVQRc7aEFE_4DJtFQyV7-9S2NG</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>De Carne, Giovanni</creator><creator>Langwasser, Marius</creator><creator>Zhu, Rongwu</creator><creator>Liserre, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3700-2902</orcidid><orcidid>https://orcid.org/0000-0001-9909-7516</orcidid><orcidid>https://orcid.org/0000-0002-8030-4738</orcidid></search><sort><creationdate>20190601</creationdate><title>Smart Transformer-Based Single Phase-To-Neutral Fault Management</title><author>De Carne, Giovanni ; Langwasser, Marius ; Zhu, Rongwu ; Liserre, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-b4538c12d4acfe93298fc001e8978c90c46699615261d488aec825a9b3a22a843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternating current</topic><topic>Capacitors</topic><topic>Conductors</topic><topic>DC-link capacitor lifetime</topic><topic>Distributed generation</topic><topic>Harmonic analysis</topic><topic>Harmonic oscillation</topic><topic>Line current</topic><topic>Low voltage</topic><topic>Maintenance engineering</topic><topic>Neutral conductors</topic><topic>neutral current</topic><topic>Oscillators</topic><topic>Performance enhancement</topic><topic>Phase transitions</topic><topic>Power system harmonics</topic><topic>single-phase-to-neutral faults</topic><topic>smart transformer</topic><topic>Transformers</topic><topic>two-phase operation</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>De Carne, Giovanni</creatorcontrib><creatorcontrib>Langwasser, Marius</creatorcontrib><creatorcontrib>Zhu, Rongwu</creatorcontrib><creatorcontrib>Liserre, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>De Carne, Giovanni</au><au>Langwasser, Marius</au><au>Zhu, Rongwu</au><au>Liserre, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Smart Transformer-Based Single Phase-To-Neutral Fault Management</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>34</volume><issue>3</issue><spage>1049</spage><epage>1059</epage><pages>1049-1059</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>The smart transformer (ST), with its high control capability, offers new features for optimizing the management of the distribution grid. The ST, by controlling the voltage in each phase independently, is able to manage the operations during grid faults, in particular in the single-phase ones. The ST, when a single-phase-to-ground fault occurs, can rapidly reduce the voltage in the phase under fault. Thus, it guarantees system safety and operates with the remaining two healthy phases to avoid unnecessary interruption in the healthy lines. However, the two-phase asymmetrical operation challenges the system performances due to the high power 2nd harmonic ripple in the dc voltage, that reduces the capacitors, lifespan and the high current flowing in the neutral conductor. These issues would force the grid operator to increase the ST maintenance, in order to avoid unplanned faults in the ST hardware, due to failure of aged capacitors. This paper presents a flexible-control strategy, based on the phase-shift angle control between two healthy-phase voltages, that reduces the impact of the power 2nd harmonic oscillation and thus can delay the maintenance intervention. The proposed strategy aims to improve system performances by avoiding neutral-line current overload and attenuating ac side active power (low voltage dc-link voltage) oscillation. Depending on the grid conditions (small dc link capacitance or low ampacity of neutral cable), the voltage angle can be adapted, minimizing the impact of the two-phase operation system in the ST-fed grid. The effectiveness and feasibility of the proposed approach have been validated experimentally with a simplified microgrid setup.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRD.2019.2899518</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-3700-2902</orcidid><orcidid>https://orcid.org/0000-0001-9909-7516</orcidid><orcidid>https://orcid.org/0000-0002-8030-4738</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2019-06, Vol.34 (3), p.1049-1059
issn 0885-8977
1937-4208
language eng
recordid cdi_ieee_primary_8642327
source IEEE Electronic Library (IEL)
subjects Alternating current
Capacitors
Conductors
DC-link capacitor lifetime
Distributed generation
Harmonic analysis
Harmonic oscillation
Line current
Low voltage
Maintenance engineering
Neutral conductors
neutral current
Oscillators
Performance enhancement
Phase transitions
Power system harmonics
single-phase-to-neutral faults
smart transformer
Transformers
two-phase operation
Voltage control
title Smart Transformer-Based Single Phase-To-Neutral Fault Management
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T05%3A55%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Smart%20Transformer-Based%20Single%20Phase-To-Neutral%20Fault%20Management&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=De%20Carne,%20Giovanni&rft.date=2019-06-01&rft.volume=34&rft.issue=3&rft.spage=1049&rft.epage=1059&rft.pages=1049-1059&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/TPWRD.2019.2899518&rft_dat=%3Cproquest_RIE%3E2230771063%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2230771063&rft_id=info:pmid/&rft_ieee_id=8642327&rfr_iscdi=true