Impulsive Control of Nonlinear Systems With Time-Varying Delay and Applications

Impulsive control of nonlinear delay systems is studied in this paper, where the time delays addressed may be the constant delay, bounded time-varying delay, or unbounded time-varying delay. Based on the impulsive control theory and some analysis techniques, a new theoretical result for global expon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on cybernetics 2020-06, Vol.50 (6), p.2661-2673
Hauptverfasser: Li, Xiaodi, Cao, Jinde, Ho, Daniel W. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2673
container_issue 6
container_start_page 2661
container_title IEEE transactions on cybernetics
container_volume 50
creator Li, Xiaodi
Cao, Jinde
Ho, Daniel W. C.
description Impulsive control of nonlinear delay systems is studied in this paper, where the time delays addressed may be the constant delay, bounded time-varying delay, or unbounded time-varying delay. Based on the impulsive control theory and some analysis techniques, a new theoretical result for global exponential stability is derived from the impulsive control point of view. The significance of the presented result is that the stability can be achieved via the impulsive control at certain impulse points despite the existence of impulsive perturbations which causes negative effect to the control. That is, the impulsive control provides a super performance to allow the existence of impulsive perturbations. In addition, we apply the theoretical result to the problem of impulsive control of delayed neural networks. Some results for global exponential stability and synchronization control of neural networks with time delays are derived via impulsive control. Three illustrated examples are given to show the effectiveness and distinctiveness of the proposed impulsive control schemes.
doi_str_mv 10.1109/TCYB.2019.2896340
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8641318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8641318</ieee_id><sourcerecordid>2401124215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-423c407a423fd7dc53966fa77a5a688bb4ea5ff52f2755acfb1ad900f8bad0ca3</originalsourceid><addsrcrecordid>eNpdkMlOwzAQQC0EolXpByAkZIkLlxQvWZxjCVulih4oIE6Wk9jgKomDnSD173HU0gO-jDXzZjTzADjHaIYxSm_W2cftjCCczghLYxqiIzAmOGYBIUl0fPjHyQhMndsg_5hPpewUjChKYhIxPAarRd32ldM_Emam6aypoFHw2TSVbqSw8GXrOlk7-K67L7jWtQzehN3q5hPeyUpsoWhKOG_bShei06ZxZ-BEicrJ6T5OwOvD_Tp7Cparx0U2XwYFDdMuCAktQpQIH1WZlEVE0zhWIklEJGLG8jyUIlIqIsofE4lC5ViUKUKK5aJEhaATcL2b21rz3UvX8Vq7QlaVaKTpHSeEpBiTkCYevfqHbkxvG78dJyEaIIIjT-EdVVjjnJWKt1bX_laOER-E80E4H4TzvXDfc7mf3Oe1LA8df3o9cLEDtJTyUGZxiClm9BfSJ4PD</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2401124215</pqid></control><display><type>article</type><title>Impulsive Control of Nonlinear Systems With Time-Varying Delay and Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Li, Xiaodi ; Cao, Jinde ; Ho, Daniel W. C.</creator><creatorcontrib>Li, Xiaodi ; Cao, Jinde ; Ho, Daniel W. C.</creatorcontrib><description>Impulsive control of nonlinear delay systems is studied in this paper, where the time delays addressed may be the constant delay, bounded time-varying delay, or unbounded time-varying delay. Based on the impulsive control theory and some analysis techniques, a new theoretical result for global exponential stability is derived from the impulsive control point of view. The significance of the presented result is that the stability can be achieved via the impulsive control at certain impulse points despite the existence of impulsive perturbations which causes negative effect to the control. That is, the impulsive control provides a super performance to allow the existence of impulsive perturbations. In addition, we apply the theoretical result to the problem of impulsive control of delayed neural networks. Some results for global exponential stability and synchronization control of neural networks with time delays are derived via impulsive control. Three illustrated examples are given to show the effectiveness and distinctiveness of the proposed impulsive control schemes.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2019.2896340</identifier><identifier>PMID: 30762581</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Control stability ; Control systems ; Control theory ; Delay ; Delay effects ; Delay systems ; Delays ; exponential stability ; impulsive control ; Neural networks ; Nonlinear control ; Nonlinear systems ; Perturbation methods ; Stability analysis ; Synchronism ; Synchronization ; synchronization control ; Time varying control ; Time-varying systems ; unbounded time-varying delay</subject><ispartof>IEEE transactions on cybernetics, 2020-06, Vol.50 (6), p.2661-2673</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-423c407a423fd7dc53966fa77a5a688bb4ea5ff52f2755acfb1ad900f8bad0ca3</citedby><cites>FETCH-LOGICAL-c349t-423c407a423fd7dc53966fa77a5a688bb4ea5ff52f2755acfb1ad900f8bad0ca3</cites><orcidid>0000-0003-3133-7119 ; 0000-0001-5124-7159 ; 0000-0001-9799-3712</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8641318$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8641318$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30762581$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaodi</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Ho, Daniel W. C.</creatorcontrib><title>Impulsive Control of Nonlinear Systems With Time-Varying Delay and Applications</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Impulsive control of nonlinear delay systems is studied in this paper, where the time delays addressed may be the constant delay, bounded time-varying delay, or unbounded time-varying delay. Based on the impulsive control theory and some analysis techniques, a new theoretical result for global exponential stability is derived from the impulsive control point of view. The significance of the presented result is that the stability can be achieved via the impulsive control at certain impulse points despite the existence of impulsive perturbations which causes negative effect to the control. That is, the impulsive control provides a super performance to allow the existence of impulsive perturbations. In addition, we apply the theoretical result to the problem of impulsive control of delayed neural networks. Some results for global exponential stability and synchronization control of neural networks with time delays are derived via impulsive control. Three illustrated examples are given to show the effectiveness and distinctiveness of the proposed impulsive control schemes.</description><subject>Control stability</subject><subject>Control systems</subject><subject>Control theory</subject><subject>Delay</subject><subject>Delay effects</subject><subject>Delay systems</subject><subject>Delays</subject><subject>exponential stability</subject><subject>impulsive control</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Perturbation methods</subject><subject>Stability analysis</subject><subject>Synchronism</subject><subject>Synchronization</subject><subject>synchronization control</subject><subject>Time varying control</subject><subject>Time-varying systems</subject><subject>unbounded time-varying delay</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMlOwzAQQC0EolXpByAkZIkLlxQvWZxjCVulih4oIE6Wk9jgKomDnSD173HU0gO-jDXzZjTzADjHaIYxSm_W2cftjCCczghLYxqiIzAmOGYBIUl0fPjHyQhMndsg_5hPpewUjChKYhIxPAarRd32ldM_Emam6aypoFHw2TSVbqSw8GXrOlk7-K67L7jWtQzehN3q5hPeyUpsoWhKOG_bShei06ZxZ-BEicrJ6T5OwOvD_Tp7Cparx0U2XwYFDdMuCAktQpQIH1WZlEVE0zhWIklEJGLG8jyUIlIqIsofE4lC5ViUKUKK5aJEhaATcL2b21rz3UvX8Vq7QlaVaKTpHSeEpBiTkCYevfqHbkxvG78dJyEaIIIjT-EdVVjjnJWKt1bX_laOER-E80E4H4TzvXDfc7mf3Oe1LA8df3o9cLEDtJTyUGZxiClm9BfSJ4PD</recordid><startdate>20200601</startdate><enddate>20200601</enddate><creator>Li, Xiaodi</creator><creator>Cao, Jinde</creator><creator>Ho, Daniel W. C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0001-5124-7159</orcidid><orcidid>https://orcid.org/0000-0001-9799-3712</orcidid></search><sort><creationdate>20200601</creationdate><title>Impulsive Control of Nonlinear Systems With Time-Varying Delay and Applications</title><author>Li, Xiaodi ; Cao, Jinde ; Ho, Daniel W. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-423c407a423fd7dc53966fa77a5a688bb4ea5ff52f2755acfb1ad900f8bad0ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Control stability</topic><topic>Control systems</topic><topic>Control theory</topic><topic>Delay</topic><topic>Delay effects</topic><topic>Delay systems</topic><topic>Delays</topic><topic>exponential stability</topic><topic>impulsive control</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Perturbation methods</topic><topic>Stability analysis</topic><topic>Synchronism</topic><topic>Synchronization</topic><topic>synchronization control</topic><topic>Time varying control</topic><topic>Time-varying systems</topic><topic>unbounded time-varying delay</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaodi</creatorcontrib><creatorcontrib>Cao, Jinde</creatorcontrib><creatorcontrib>Ho, Daniel W. C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Li, Xiaodi</au><au>Cao, Jinde</au><au>Ho, Daniel W. C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impulsive Control of Nonlinear Systems With Time-Varying Delay and Applications</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2020-06-01</date><risdate>2020</risdate><volume>50</volume><issue>6</issue><spage>2661</spage><epage>2673</epage><pages>2661-2673</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Impulsive control of nonlinear delay systems is studied in this paper, where the time delays addressed may be the constant delay, bounded time-varying delay, or unbounded time-varying delay. Based on the impulsive control theory and some analysis techniques, a new theoretical result for global exponential stability is derived from the impulsive control point of view. The significance of the presented result is that the stability can be achieved via the impulsive control at certain impulse points despite the existence of impulsive perturbations which causes negative effect to the control. That is, the impulsive control provides a super performance to allow the existence of impulsive perturbations. In addition, we apply the theoretical result to the problem of impulsive control of delayed neural networks. Some results for global exponential stability and synchronization control of neural networks with time delays are derived via impulsive control. Three illustrated examples are given to show the effectiveness and distinctiveness of the proposed impulsive control schemes.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30762581</pmid><doi>10.1109/TCYB.2019.2896340</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0003-3133-7119</orcidid><orcidid>https://orcid.org/0000-0001-5124-7159</orcidid><orcidid>https://orcid.org/0000-0001-9799-3712</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2020-06, Vol.50 (6), p.2661-2673
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_8641318
source IEEE Electronic Library (IEL)
subjects Control stability
Control systems
Control theory
Delay
Delay effects
Delay systems
Delays
exponential stability
impulsive control
Neural networks
Nonlinear control
Nonlinear systems
Perturbation methods
Stability analysis
Synchronism
Synchronization
synchronization control
Time varying control
Time-varying systems
unbounded time-varying delay
title Impulsive Control of Nonlinear Systems With Time-Varying Delay and Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A50%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impulsive%20Control%20of%20Nonlinear%20Systems%20With%20Time-Varying%20Delay%20and%20Applications&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Li,%20Xiaodi&rft.date=2020-06-01&rft.volume=50&rft.issue=6&rft.spage=2661&rft.epage=2673&rft.pages=2661-2673&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2019.2896340&rft_dat=%3Cproquest_RIE%3E2401124215%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2401124215&rft_id=info:pmid/30762581&rft_ieee_id=8641318&rfr_iscdi=true