Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks

This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems 2019-12, Vol.30 (12), p.3708-3721
Hauptverfasser: Shao, Shuyi, Chen, Mou, Zhang, Youmin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3721
container_issue 12
container_start_page 3708
container_title IEEE transaction on neural networks and learning systems
container_volume 30
creator Shao, Shuyi
Chen, Mou
Zhang, Youmin
description This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the approximation approach of neural network, system uncertainties are tackled approximately. To restrain the negative effects of bounded disturbances, a nonlinear DTDO is designed. Then, a backstepping technique-based ANC strategy is proposed by utilizing a constructed auxiliary system and a discrete-time tracking differentiator. The boundness of all signals is proven in the closed-loop system under the discrete-time Lyapunov analysis. Finally, the feasibility of the proposed ANC technique is further specified based on numerical simulation results.
doi_str_mv 10.1109/TNNLS.2019.2893643
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8637961</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8637961</ieee_id><sourcerecordid>2229109331</sourcerecordid><originalsourceid>FETCH-LOGICAL-c417t-f2f22458a5119bd415c14826a4cf286e586fa89a24eb7fa8744ec7692ed901e83</originalsourceid><addsrcrecordid>eNpdkEtPwzAMgCMEYgj4AyChSly4dDROmsdxGk9pGgeGxC1KW3d0dO1IWhD_noyNHfDFlvzZsj9CzmgypDTR17PpdPI8hITqISjNBGd75AiogBiYUvu7Wr4OyKn3iySESFLB9SEZsEQKBlwekdmosKuu-sTopvK5ww7jWbXE6K6u5m9dNG6bzrV19OKrZr5Gut5ltskxeso8uk90kW2KaIq9s3VI3Vfr3v0JOSht7fF0m4_Jy93tbPwQT57uH8ejSZxzKru4hBKAp8qmlOqs4DTNKVcgLM9LUAJTJUqrtAWOmQyV5BxzKTRgoROKih2Tq83elWs_evSdWYYnsK5tg23vDQDo4IoxGtDLf-ii7V0TrjPAIKWBAxko2FC5a713WJqVq5bWfRuamLV286vdrLWbrfYwdLFd3WdLLHYjf5IDcL4BKkTctZVgUgvKfgAS9oU-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2325191027</pqid></control><display><type>article</type><title>Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Shuyi ; Chen, Mou ; Zhang, Youmin</creator><creatorcontrib>Shao, Shuyi ; Chen, Mou ; Zhang, Youmin</creatorcontrib><description>This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the approximation approach of neural network, system uncertainties are tackled approximately. To restrain the negative effects of bounded disturbances, a nonlinear DTDO is designed. Then, a backstepping technique-based ANC strategy is proposed by utilizing a constructed auxiliary system and a discrete-time tracking differentiator. The boundness of all signals is proven in the closed-loop system under the discrete-time Lyapunov analysis. Finally, the feasibility of the proposed ANC technique is further specified based on numerical simulation results.</description><identifier>ISSN: 2162-237X</identifier><identifier>EISSN: 2162-2388</identifier><identifier>DOI: 10.1109/TNNLS.2019.2893643</identifier><identifier>PMID: 30763247</identifier><identifier>CODEN: ITNNAL</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Adaptive control ; Aerodynamics ; Artificial neural networks ; Backstepping ; Backstepping control ; Computer simulation ; Discrete time systems ; Disturbance ; disturbance observer (DO) ; Disturbance observers ; Dynamical systems ; Feedback control ; Flight control ; Flight control systems ; Mathematical models ; MIMO communication ; neural network (NN) ; Neural networks ; nonlinear discrete-time systems (NDTSs) ; Nonlinear dynamics ; Nonlinear systems ; Tracking control ; Tracking problem ; Uncertainty ; unmanned aerial vehicle (UAV) ; Unmanned aerial vehicles</subject><ispartof>IEEE transaction on neural networks and learning systems, 2019-12, Vol.30 (12), p.3708-3721</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c417t-f2f22458a5119bd415c14826a4cf286e586fa89a24eb7fa8744ec7692ed901e83</citedby><cites>FETCH-LOGICAL-c417t-f2f22458a5119bd415c14826a4cf286e586fa89a24eb7fa8744ec7692ed901e83</cites><orcidid>0000-0001-7158-8575 ; 0000-0002-9731-5943 ; 0000-0001-9458-661X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8637961$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8637961$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30763247$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Shuyi</creatorcontrib><creatorcontrib>Chen, Mou</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><title>Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks</title><title>IEEE transaction on neural networks and learning systems</title><addtitle>TNNLS</addtitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><description>This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the approximation approach of neural network, system uncertainties are tackled approximately. To restrain the negative effects of bounded disturbances, a nonlinear DTDO is designed. Then, a backstepping technique-based ANC strategy is proposed by utilizing a constructed auxiliary system and a discrete-time tracking differentiator. The boundness of all signals is proven in the closed-loop system under the discrete-time Lyapunov analysis. Finally, the feasibility of the proposed ANC technique is further specified based on numerical simulation results.</description><subject>Adaptive control</subject><subject>Aerodynamics</subject><subject>Artificial neural networks</subject><subject>Backstepping</subject><subject>Backstepping control</subject><subject>Computer simulation</subject><subject>Discrete time systems</subject><subject>Disturbance</subject><subject>disturbance observer (DO)</subject><subject>Disturbance observers</subject><subject>Dynamical systems</subject><subject>Feedback control</subject><subject>Flight control</subject><subject>Flight control systems</subject><subject>Mathematical models</subject><subject>MIMO communication</subject><subject>neural network (NN)</subject><subject>Neural networks</subject><subject>nonlinear discrete-time systems (NDTSs)</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear systems</subject><subject>Tracking control</subject><subject>Tracking problem</subject><subject>Uncertainty</subject><subject>unmanned aerial vehicle (UAV)</subject><subject>Unmanned aerial vehicles</subject><issn>2162-237X</issn><issn>2162-2388</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkEtPwzAMgCMEYgj4AyChSly4dDROmsdxGk9pGgeGxC1KW3d0dO1IWhD_noyNHfDFlvzZsj9CzmgypDTR17PpdPI8hITqISjNBGd75AiogBiYUvu7Wr4OyKn3iySESFLB9SEZsEQKBlwekdmosKuu-sTopvK5ww7jWbXE6K6u5m9dNG6bzrV19OKrZr5Gut5ltskxeso8uk90kW2KaIq9s3VI3Vfr3v0JOSht7fF0m4_Jy93tbPwQT57uH8ejSZxzKru4hBKAp8qmlOqs4DTNKVcgLM9LUAJTJUqrtAWOmQyV5BxzKTRgoROKih2Tq83elWs_evSdWYYnsK5tg23vDQDo4IoxGtDLf-ii7V0TrjPAIKWBAxko2FC5a713WJqVq5bWfRuamLV286vdrLWbrfYwdLFd3WdLLHYjf5IDcL4BKkTctZVgUgvKfgAS9oU-</recordid><startdate>20191201</startdate><enddate>20191201</enddate><creator>Shao, Shuyi</creator><creator>Chen, Mou</creator><creator>Zhang, Youmin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-7158-8575</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0001-9458-661X</orcidid></search><sort><creationdate>20191201</creationdate><title>Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks</title><author>Shao, Shuyi ; Chen, Mou ; Zhang, Youmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c417t-f2f22458a5119bd415c14826a4cf286e586fa89a24eb7fa8744ec7692ed901e83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adaptive control</topic><topic>Aerodynamics</topic><topic>Artificial neural networks</topic><topic>Backstepping</topic><topic>Backstepping control</topic><topic>Computer simulation</topic><topic>Discrete time systems</topic><topic>Disturbance</topic><topic>disturbance observer (DO)</topic><topic>Disturbance observers</topic><topic>Dynamical systems</topic><topic>Feedback control</topic><topic>Flight control</topic><topic>Flight control systems</topic><topic>Mathematical models</topic><topic>MIMO communication</topic><topic>neural network (NN)</topic><topic>Neural networks</topic><topic>nonlinear discrete-time systems (NDTSs)</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear systems</topic><topic>Tracking control</topic><topic>Tracking problem</topic><topic>Uncertainty</topic><topic>unmanned aerial vehicle (UAV)</topic><topic>Unmanned aerial vehicles</topic><toplevel>online_resources</toplevel><creatorcontrib>Shao, Shuyi</creatorcontrib><creatorcontrib>Chen, Mou</creatorcontrib><creatorcontrib>Zhang, Youmin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transaction on neural networks and learning systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shao, Shuyi</au><au>Chen, Mou</au><au>Zhang, Youmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks</atitle><jtitle>IEEE transaction on neural networks and learning systems</jtitle><stitle>TNNLS</stitle><addtitle>IEEE Trans Neural Netw Learn Syst</addtitle><date>2019-12-01</date><risdate>2019</risdate><volume>30</volume><issue>12</issue><spage>3708</spage><epage>3721</epage><pages>3708-3721</pages><issn>2162-237X</issn><eissn>2162-2388</eissn><coden>ITNNAL</coden><abstract>This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the approximation approach of neural network, system uncertainties are tackled approximately. To restrain the negative effects of bounded disturbances, a nonlinear DTDO is designed. Then, a backstepping technique-based ANC strategy is proposed by utilizing a constructed auxiliary system and a discrete-time tracking differentiator. The boundness of all signals is proven in the closed-loop system under the discrete-time Lyapunov analysis. Finally, the feasibility of the proposed ANC technique is further specified based on numerical simulation results.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>30763247</pmid><doi>10.1109/TNNLS.2019.2893643</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-7158-8575</orcidid><orcidid>https://orcid.org/0000-0002-9731-5943</orcidid><orcidid>https://orcid.org/0000-0001-9458-661X</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2162-237X
ispartof IEEE transaction on neural networks and learning systems, 2019-12, Vol.30 (12), p.3708-3721
issn 2162-237X
2162-2388
language eng
recordid cdi_ieee_primary_8637961
source IEEE Electronic Library (IEL)
subjects Adaptive control
Aerodynamics
Artificial neural networks
Backstepping
Backstepping control
Computer simulation
Discrete time systems
Disturbance
disturbance observer (DO)
Disturbance observers
Dynamical systems
Feedback control
Flight control
Flight control systems
Mathematical models
MIMO communication
neural network (NN)
Neural networks
nonlinear discrete-time systems (NDTSs)
Nonlinear dynamics
Nonlinear systems
Tracking control
Tracking problem
Uncertainty
unmanned aerial vehicle (UAV)
Unmanned aerial vehicles
title Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A55%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20Discrete-Time%20Flight%20Control%20Using%20Disturbance%20Observer%20and%20Neural%20Networks&rft.jtitle=IEEE%20transaction%20on%20neural%20networks%20and%20learning%20systems&rft.au=Shao,%20Shuyi&rft.date=2019-12-01&rft.volume=30&rft.issue=12&rft.spage=3708&rft.epage=3721&rft.pages=3708-3721&rft.issn=2162-237X&rft.eissn=2162-2388&rft.coden=ITNNAL&rft_id=info:doi/10.1109/TNNLS.2019.2893643&rft_dat=%3Cproquest_RIE%3E2229109331%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2325191027&rft_id=info:pmid/30763247&rft_ieee_id=8637961&rfr_iscdi=true