Adaptive Discrete-Time Flight Control Using Disturbance Observer and Neural Networks
This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the a...
Gespeichert in:
Veröffentlicht in: | IEEE transaction on neural networks and learning systems 2019-12, Vol.30 (12), p.3708-3721 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper studies the adaptive neural control (ANC)-based tracking problem for discrete-time nonlinear dynamics of an unmanned aerial vehicle subject to system uncertainties, bounded time-varying disturbances, and input saturation by using a discrete-time disturbance observer (DTDO). Based on the approximation approach of neural network, system uncertainties are tackled approximately. To restrain the negative effects of bounded disturbances, a nonlinear DTDO is designed. Then, a backstepping technique-based ANC strategy is proposed by utilizing a constructed auxiliary system and a discrete-time tracking differentiator. The boundness of all signals is proven in the closed-loop system under the discrete-time Lyapunov analysis. Finally, the feasibility of the proposed ANC technique is further specified based on numerical simulation results. |
---|---|
ISSN: | 2162-237X 2162-2388 |
DOI: | 10.1109/TNNLS.2019.2893643 |