Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video
Real-time detection of inshore ships plays an essential role in the efficient monitoring and management of maritime traffic and transportation for port management. Current ship detection methods which are mainly based on remote sensing images or radar images hardly meet real-time requirement due to...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on circuits and systems for video technology 2020-03, Vol.30 (3), p.781-794 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 794 |
---|---|
container_issue | 3 |
container_start_page | 781 |
container_title | IEEE transactions on circuits and systems for video technology |
container_volume | 30 |
creator | Shao, Zhenfeng Wang, Linggang Wang, Zhongyuan Du, Wan Wu, Wenjing |
description | Real-time detection of inshore ships plays an essential role in the efficient monitoring and management of maritime traffic and transportation for port management. Current ship detection methods which are mainly based on remote sensing images or radar images hardly meet real-time requirement due to the timeliness of image acquisition. In this paper, we propose to use visual images captured by an on-land surveillance camera network to achieve real-time detection. However, due to the complex background of visual images and the diversity of ship categories, the existing convolution neural network (CNN) based methods are either inaccurate or slow. To achieve high detection accuracy and real-time performance simultaneously, we propose a saliency-aware CNN framework for ship detection, comprising comprehensive ship discriminative features, such as deep feature, saliency map, and coastline prior. This model uses CNN to predict the category and the position of ships and uses the global contrast based salient region detection to correct the location. We also extract coastline information and respectively incorporate it into CNN and saliency detection to obtain more accurate ship locations. We implement our model on Darknet under CUDA 8.0 and CUDNN V5 and use a real-world visual image dataset for training and evaluation. The experimental results show that our model outperforms representative counterparts (Faster R-CNN, SSD, and YOLOv2) in terms of accuracy and speed. |
doi_str_mv | 10.1109/TCSVT.2019.2897980 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8637028</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8637028</ieee_id><sourcerecordid>2374677012</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-db65eb29fbb7f2fb0033736c5a286876c2ba330b44644d83d5152bfc508552013</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFHsexs6wCBaQKJFK6tWzHES4hLk7Sqn9P-hCrO4t7ZjQHoVuCJ4Tg7GGRF8vFBDDJJiAyngl8hkaEMREDYHY-zJiRWABhl-iqbVcYk0QkfIQ-ClU725hdPN2qYKPcNxtf953zTfRm-6DqIbqtD99R5UNUfLl19Gg7aw4N10RFHzbW1bVqjI2WrrT-Gl1Uqm7tzSnH6HP2tMhf4vn782s-nccGMtbFpU6Z1ZBVWvMKKo0xpZymhikQqeCpAa0oxTpJ0iQpBS0ZYaArw7BgbPiUjtH9ce86-N_etp1c-T40w0kJlCcp55jA0IJjywTftsFWch3cjwo7SbDcu5MHd3LvTp7cDdDdEXLW2n9ApJRjEPQP71Bqbw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2374677012</pqid></control><display><type>article</type><title>Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video</title><source>IEEE Electronic Library (IEL)</source><creator>Shao, Zhenfeng ; Wang, Linggang ; Wang, Zhongyuan ; Du, Wan ; Wu, Wenjing</creator><creatorcontrib>Shao, Zhenfeng ; Wang, Linggang ; Wang, Zhongyuan ; Du, Wan ; Wu, Wenjing</creatorcontrib><description>Real-time detection of inshore ships plays an essential role in the efficient monitoring and management of maritime traffic and transportation for port management. Current ship detection methods which are mainly based on remote sensing images or radar images hardly meet real-time requirement due to the timeliness of image acquisition. In this paper, we propose to use visual images captured by an on-land surveillance camera network to achieve real-time detection. However, due to the complex background of visual images and the diversity of ship categories, the existing convolution neural network (CNN) based methods are either inaccurate or slow. To achieve high detection accuracy and real-time performance simultaneously, we propose a saliency-aware CNN framework for ship detection, comprising comprehensive ship discriminative features, such as deep feature, saliency map, and coastline prior. This model uses CNN to predict the category and the position of ships and uses the global contrast based salient region detection to correct the location. We also extract coastline information and respectively incorporate it into CNN and saliency detection to obtain more accurate ship locations. We implement our model on Darknet under CUDA 8.0 and CUDNN V5 and use a real-world visual image dataset for training and evaluation. The experimental results show that our model outperforms representative counterparts (Faster R-CNN, SSD, and YOLOv2) in terms of accuracy and speed.</description><identifier>ISSN: 1051-8215</identifier><identifier>EISSN: 1558-2205</identifier><identifier>DOI: 10.1109/TCSVT.2019.2897980</identifier><identifier>CODEN: ITCTEM</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial neural networks ; CNN ; coastline extraction ; Coasts ; Convolution ; Feature extraction ; Image acquisition ; Image detection ; Marine transportation ; Marine vehicles ; Neural networks ; Object detection ; object location ; Radar imaging ; Real time ; Real-time systems ; Remote sensing ; Salience ; saliency detection ; Ship detection ; Ships ; Surveillance ; Surveillance radar ; Traffic management ; Visualization</subject><ispartof>IEEE transactions on circuits and systems for video technology, 2020-03, Vol.30 (3), p.781-794</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2020</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-db65eb29fbb7f2fb0033736c5a286876c2ba330b44644d83d5152bfc508552013</citedby><cites>FETCH-LOGICAL-c295t-db65eb29fbb7f2fb0033736c5a286876c2ba330b44644d83d5152bfc508552013</cites><orcidid>0000-0002-9796-488X ; 0000-0003-2487-9577 ; 0000-0003-2057-2885 ; 0000-0002-9448-5533</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8637028$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8637028$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shao, Zhenfeng</creatorcontrib><creatorcontrib>Wang, Linggang</creatorcontrib><creatorcontrib>Wang, Zhongyuan</creatorcontrib><creatorcontrib>Du, Wan</creatorcontrib><creatorcontrib>Wu, Wenjing</creatorcontrib><title>Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video</title><title>IEEE transactions on circuits and systems for video technology</title><addtitle>TCSVT</addtitle><description>Real-time detection of inshore ships plays an essential role in the efficient monitoring and management of maritime traffic and transportation for port management. Current ship detection methods which are mainly based on remote sensing images or radar images hardly meet real-time requirement due to the timeliness of image acquisition. In this paper, we propose to use visual images captured by an on-land surveillance camera network to achieve real-time detection. However, due to the complex background of visual images and the diversity of ship categories, the existing convolution neural network (CNN) based methods are either inaccurate or slow. To achieve high detection accuracy and real-time performance simultaneously, we propose a saliency-aware CNN framework for ship detection, comprising comprehensive ship discriminative features, such as deep feature, saliency map, and coastline prior. This model uses CNN to predict the category and the position of ships and uses the global contrast based salient region detection to correct the location. We also extract coastline information and respectively incorporate it into CNN and saliency detection to obtain more accurate ship locations. We implement our model on Darknet under CUDA 8.0 and CUDNN V5 and use a real-world visual image dataset for training and evaluation. The experimental results show that our model outperforms representative counterparts (Faster R-CNN, SSD, and YOLOv2) in terms of accuracy and speed.</description><subject>Artificial neural networks</subject><subject>CNN</subject><subject>coastline extraction</subject><subject>Coasts</subject><subject>Convolution</subject><subject>Feature extraction</subject><subject>Image acquisition</subject><subject>Image detection</subject><subject>Marine transportation</subject><subject>Marine vehicles</subject><subject>Neural networks</subject><subject>Object detection</subject><subject>object location</subject><subject>Radar imaging</subject><subject>Real time</subject><subject>Real-time systems</subject><subject>Remote sensing</subject><subject>Salience</subject><subject>saliency detection</subject><subject>Ship detection</subject><subject>Ships</subject><subject>Surveillance</subject><subject>Surveillance radar</subject><subject>Traffic management</subject><subject>Visualization</subject><issn>1051-8215</issn><issn>1558-2205</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRS0EEqXwA7CJxDrFHsexs6wCBaQKJFK6tWzHES4hLk7Sqn9P-hCrO4t7ZjQHoVuCJ4Tg7GGRF8vFBDDJJiAyngl8hkaEMREDYHY-zJiRWABhl-iqbVcYk0QkfIQ-ClU725hdPN2qYKPcNxtf953zTfRm-6DqIbqtD99R5UNUfLl19Gg7aw4N10RFHzbW1bVqjI2WrrT-Gl1Uqm7tzSnH6HP2tMhf4vn782s-nccGMtbFpU6Z1ZBVWvMKKo0xpZymhikQqeCpAa0oxTpJ0iQpBS0ZYaArw7BgbPiUjtH9ce86-N_etp1c-T40w0kJlCcp55jA0IJjywTftsFWch3cjwo7SbDcu5MHd3LvTp7cDdDdEXLW2n9ApJRjEPQP71Bqbw</recordid><startdate>20200301</startdate><enddate>20200301</enddate><creator>Shao, Zhenfeng</creator><creator>Wang, Linggang</creator><creator>Wang, Zhongyuan</creator><creator>Du, Wan</creator><creator>Wu, Wenjing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-9796-488X</orcidid><orcidid>https://orcid.org/0000-0003-2487-9577</orcidid><orcidid>https://orcid.org/0000-0003-2057-2885</orcidid><orcidid>https://orcid.org/0000-0002-9448-5533</orcidid></search><sort><creationdate>20200301</creationdate><title>Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video</title><author>Shao, Zhenfeng ; Wang, Linggang ; Wang, Zhongyuan ; Du, Wan ; Wu, Wenjing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-db65eb29fbb7f2fb0033736c5a286876c2ba330b44644d83d5152bfc508552013</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial neural networks</topic><topic>CNN</topic><topic>coastline extraction</topic><topic>Coasts</topic><topic>Convolution</topic><topic>Feature extraction</topic><topic>Image acquisition</topic><topic>Image detection</topic><topic>Marine transportation</topic><topic>Marine vehicles</topic><topic>Neural networks</topic><topic>Object detection</topic><topic>object location</topic><topic>Radar imaging</topic><topic>Real time</topic><topic>Real-time systems</topic><topic>Remote sensing</topic><topic>Salience</topic><topic>saliency detection</topic><topic>Ship detection</topic><topic>Ships</topic><topic>Surveillance</topic><topic>Surveillance radar</topic><topic>Traffic management</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Zhenfeng</creatorcontrib><creatorcontrib>Wang, Linggang</creatorcontrib><creatorcontrib>Wang, Zhongyuan</creatorcontrib><creatorcontrib>Du, Wan</creatorcontrib><creatorcontrib>Wu, Wenjing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on circuits and systems for video technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shao, Zhenfeng</au><au>Wang, Linggang</au><au>Wang, Zhongyuan</au><au>Du, Wan</au><au>Wu, Wenjing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video</atitle><jtitle>IEEE transactions on circuits and systems for video technology</jtitle><stitle>TCSVT</stitle><date>2020-03-01</date><risdate>2020</risdate><volume>30</volume><issue>3</issue><spage>781</spage><epage>794</epage><pages>781-794</pages><issn>1051-8215</issn><eissn>1558-2205</eissn><coden>ITCTEM</coden><abstract>Real-time detection of inshore ships plays an essential role in the efficient monitoring and management of maritime traffic and transportation for port management. Current ship detection methods which are mainly based on remote sensing images or radar images hardly meet real-time requirement due to the timeliness of image acquisition. In this paper, we propose to use visual images captured by an on-land surveillance camera network to achieve real-time detection. However, due to the complex background of visual images and the diversity of ship categories, the existing convolution neural network (CNN) based methods are either inaccurate or slow. To achieve high detection accuracy and real-time performance simultaneously, we propose a saliency-aware CNN framework for ship detection, comprising comprehensive ship discriminative features, such as deep feature, saliency map, and coastline prior. This model uses CNN to predict the category and the position of ships and uses the global contrast based salient region detection to correct the location. We also extract coastline information and respectively incorporate it into CNN and saliency detection to obtain more accurate ship locations. We implement our model on Darknet under CUDA 8.0 and CUDNN V5 and use a real-world visual image dataset for training and evaluation. The experimental results show that our model outperforms representative counterparts (Faster R-CNN, SSD, and YOLOv2) in terms of accuracy and speed.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCSVT.2019.2897980</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-9796-488X</orcidid><orcidid>https://orcid.org/0000-0003-2487-9577</orcidid><orcidid>https://orcid.org/0000-0003-2057-2885</orcidid><orcidid>https://orcid.org/0000-0002-9448-5533</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1051-8215 |
ispartof | IEEE transactions on circuits and systems for video technology, 2020-03, Vol.30 (3), p.781-794 |
issn | 1051-8215 1558-2205 |
language | eng |
recordid | cdi_ieee_primary_8637028 |
source | IEEE Electronic Library (IEL) |
subjects | Artificial neural networks CNN coastline extraction Coasts Convolution Feature extraction Image acquisition Image detection Marine transportation Marine vehicles Neural networks Object detection object location Radar imaging Real time Real-time systems Remote sensing Salience saliency detection Ship detection Ships Surveillance Surveillance radar Traffic management Visualization |
title | Saliency-Aware Convolution Neural Network for Ship Detection in Surveillance Video |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T01%3A09%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saliency-Aware%20Convolution%20Neural%20Network%20for%20Ship%20Detection%20in%20Surveillance%20Video&rft.jtitle=IEEE%20transactions%20on%20circuits%20and%20systems%20for%20video%20technology&rft.au=Shao,%20Zhenfeng&rft.date=2020-03-01&rft.volume=30&rft.issue=3&rft.spage=781&rft.epage=794&rft.pages=781-794&rft.issn=1051-8215&rft.eissn=1558-2205&rft.coden=ITCTEM&rft_id=info:doi/10.1109/TCSVT.2019.2897980&rft_dat=%3Cproquest_RIE%3E2374677012%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2374677012&rft_id=info:pmid/&rft_ieee_id=8637028&rfr_iscdi=true |