Genetic algorithm optimize neural network based on structural risk minimization

The paper demonstrates a method for optimizing a neural network based on structural risk minimization (SRM). The method combines the principle of SRM and neural network using genetic algorithms to optimize the perceptron to avoid the failings of the traditional perceptron; local convergence of conne...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Fan Jinsong, Tao Qing, Fang Tingjian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 952 vol.2
container_issue
container_start_page 948
container_title
container_volume 2
creator Fan Jinsong
Tao Qing
Fang Tingjian
description The paper demonstrates a method for optimizing a neural network based on structural risk minimization (SRM). The method combines the principle of SRM and neural network using genetic algorithms to optimize the perceptron to avoid the failings of the traditional perceptron; local convergence of connection weight and high probability of failed recognition. Owing to global optimization by the genetic algorithm, the improved method can evolve and adapt itself. It has better generalization performance and better property of avoiding disturbance, which improves the whole performance of the neural network. Compared with the normal algorithm of SVM, it has wide application and strong ability to deal with large data.
doi_str_mv 10.1109/WCICA.2000.863373
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_863373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>863373</ieee_id><sourcerecordid>863373</sourcerecordid><originalsourceid>FETCH-ieee_primary_8633733</originalsourceid><addsrcrecordid>eNp9zrsOgjAYhuEmxsQTF6BTb0AsFARGQzxNLia6kYq_-gu0pC0xevUeZ6d3ePIlHyFDj7mex5LJLl2nM9dnjLnxlPOIt0iPRTHjYZKE-w5xjLm-kAUB54nfJZslSLCYU1GelUZ7qaiqLVb4ACqh0aJ8xd6ULuhBGDhSJamxusntxzSaglYo3wNhUckBaZ9EacD5tU9Gi_k2XY0RALJaYyX0Pfte43_xCbsAP1Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Genetic algorithm optimize neural network based on structural risk minimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Fan Jinsong ; Tao Qing ; Fang Tingjian</creator><creatorcontrib>Fan Jinsong ; Tao Qing ; Fang Tingjian</creatorcontrib><description>The paper demonstrates a method for optimizing a neural network based on structural risk minimization (SRM). The method combines the principle of SRM and neural network using genetic algorithms to optimize the perceptron to avoid the failings of the traditional perceptron; local convergence of connection weight and high probability of failed recognition. Owing to global optimization by the genetic algorithm, the improved method can evolve and adapt itself. It has better generalization performance and better property of avoiding disturbance, which improves the whole performance of the neural network. Compared with the normal algorithm of SVM, it has wide application and strong ability to deal with large data.</description><identifier>ISBN: 078035995X</identifier><identifier>ISBN: 9780780359956</identifier><identifier>DOI: 10.1109/WCICA.2000.863373</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convergence ; Genetic algorithms ; Intelligent networks ; Intelligent structures ; Machine intelligence ; Neural networks ; Optimization methods ; Paper technology ; Risk management ; Support vector machines</subject><ispartof>Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393), 2000, Vol.2, p.948-952 vol.2</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/863373$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,4036,4037,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/863373$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Fan Jinsong</creatorcontrib><creatorcontrib>Tao Qing</creatorcontrib><creatorcontrib>Fang Tingjian</creatorcontrib><title>Genetic algorithm optimize neural network based on structural risk minimization</title><title>Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393)</title><addtitle>WCICA</addtitle><description>The paper demonstrates a method for optimizing a neural network based on structural risk minimization (SRM). The method combines the principle of SRM and neural network using genetic algorithms to optimize the perceptron to avoid the failings of the traditional perceptron; local convergence of connection weight and high probability of failed recognition. Owing to global optimization by the genetic algorithm, the improved method can evolve and adapt itself. It has better generalization performance and better property of avoiding disturbance, which improves the whole performance of the neural network. Compared with the normal algorithm of SVM, it has wide application and strong ability to deal with large data.</description><subject>Convergence</subject><subject>Genetic algorithms</subject><subject>Intelligent networks</subject><subject>Intelligent structures</subject><subject>Machine intelligence</subject><subject>Neural networks</subject><subject>Optimization methods</subject><subject>Paper technology</subject><subject>Risk management</subject><subject>Support vector machines</subject><isbn>078035995X</isbn><isbn>9780780359956</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9zrsOgjAYhuEmxsQTF6BTb0AsFARGQzxNLia6kYq_-gu0pC0xevUeZ6d3ePIlHyFDj7mex5LJLl2nM9dnjLnxlPOIt0iPRTHjYZKE-w5xjLm-kAUB54nfJZslSLCYU1GelUZ7qaiqLVb4ACqh0aJ8xd6ULuhBGDhSJamxusntxzSaglYo3wNhUckBaZ9EacD5tU9Gi_k2XY0RALJaYyX0Pfte43_xCbsAP1Q</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Fan Jinsong</creator><creator>Tao Qing</creator><creator>Fang Tingjian</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>2000</creationdate><title>Genetic algorithm optimize neural network based on structural risk minimization</title><author>Fan Jinsong ; Tao Qing ; Fang Tingjian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_8633733</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Convergence</topic><topic>Genetic algorithms</topic><topic>Intelligent networks</topic><topic>Intelligent structures</topic><topic>Machine intelligence</topic><topic>Neural networks</topic><topic>Optimization methods</topic><topic>Paper technology</topic><topic>Risk management</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Fan Jinsong</creatorcontrib><creatorcontrib>Tao Qing</creatorcontrib><creatorcontrib>Fang Tingjian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fan Jinsong</au><au>Tao Qing</au><au>Fang Tingjian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Genetic algorithm optimize neural network based on structural risk minimization</atitle><btitle>Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393)</btitle><stitle>WCICA</stitle><date>2000</date><risdate>2000</risdate><volume>2</volume><spage>948</spage><epage>952 vol.2</epage><pages>948-952 vol.2</pages><isbn>078035995X</isbn><isbn>9780780359956</isbn><abstract>The paper demonstrates a method for optimizing a neural network based on structural risk minimization (SRM). The method combines the principle of SRM and neural network using genetic algorithms to optimize the perceptron to avoid the failings of the traditional perceptron; local convergence of connection weight and high probability of failed recognition. Owing to global optimization by the genetic algorithm, the improved method can evolve and adapt itself. It has better generalization performance and better property of avoiding disturbance, which improves the whole performance of the neural network. Compared with the normal algorithm of SVM, it has wide application and strong ability to deal with large data.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2000.863373</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 078035995X
ispartof Proceedings of the 3rd World Congress on Intelligent Control and Automation (Cat. No.00EX393), 2000, Vol.2, p.948-952 vol.2
issn
language eng
recordid cdi_ieee_primary_863373
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Convergence
Genetic algorithms
Intelligent networks
Intelligent structures
Machine intelligence
Neural networks
Optimization methods
Paper technology
Risk management
Support vector machines
title Genetic algorithm optimize neural network based on structural risk minimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T01%3A21%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Genetic%20algorithm%20optimize%20neural%20network%20based%20on%20structural%20risk%20minimization&rft.btitle=Proceedings%20of%20the%203rd%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation%20(Cat.%20No.00EX393)&rft.au=Fan%20Jinsong&rft.date=2000&rft.volume=2&rft.spage=948&rft.epage=952%20vol.2&rft.pages=948-952%20vol.2&rft.isbn=078035995X&rft.isbn_list=9780780359956&rft_id=info:doi/10.1109/WCICA.2000.863373&rft_dat=%3Cieee_6IE%3E863373%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=863373&rfr_iscdi=true