A Back-Projection Tomographic Framework for VHR SAR Image Change Detection

Information on 3-D structure expands the scope of change detection applications, for example, in urban studies, human activity, and forest monitoring. Current change detection methods do not fully consider the specifics of SAR data or the properties of the corresponding image focusing techniques. We...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on geoscience and remote sensing 2019-07, Vol.57 (7), p.4470-4484
Hauptverfasser: Mendez Dominguez, Elias, Magnard, Christophe, Meier, Erich, Small, David, Schaepman, Michael E., Henke, Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Information on 3-D structure expands the scope of change detection applications, for example, in urban studies, human activity, and forest monitoring. Current change detection methods do not fully consider the specifics of SAR data or the properties of the corresponding image focusing techniques. We propose a three-stage method complementing the properties of 2-D and 3-D very high-resolution (VHR) synthetic aperture radar imagery to improve the performance of 2-D only approaches. The method takes advantage of back-projection tomography to ease translation of the 2-D location of the targets into their corresponding 3-D location and vice versa. Detection of changes caused by objects with a small vertical extent is based on the corresponding backscatter difference, while changes caused by objects with a large vertical extent are detected with both backscatter and height difference information combined in a conditional random field. Using multitemporal images, the kappa coefficient improved by a factor of two in comparison with traditional schemes.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2019.2891308