Hybrid Nonsmooth Barrier Functions With Applications to Provably Safe and Composable Collision Avoidance for Robotic Systems

Robots are entering an age of ubiquity, and to operate effectively, these systems must typically satisfy a series of constraints (e.g., collision avoidance, obeying speed limits, maintaining connectivity). In addition, modern applications hinge on the completion of particular tasks, such as driving...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE robotics and automation letters 2019-04, Vol.4 (2), p.1303-1310
Hauptverfasser: Glotfelter, Paul, Buckley, Ian, Egerstedt, Magnus
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1310
container_issue 2
container_start_page 1303
container_title IEEE robotics and automation letters
container_volume 4
creator Glotfelter, Paul
Buckley, Ian
Egerstedt, Magnus
description Robots are entering an age of ubiquity, and to operate effectively, these systems must typically satisfy a series of constraints (e.g., collision avoidance, obeying speed limits, maintaining connectivity). In addition, modern applications hinge on the completion of particular tasks, such as driving to a certain location or monitoring a crop patch. The dichotomy between satisfying constraints and completing objectives creates a need for constraint-satisfaction frameworks that are composable with a pre-existing primary objective. Barrier functions have recently emerged as a practical and the composable method for constraint satisfaction, and prior results demonstrate a system of Boolean logic for nonsmooth barrier functions as well as a composable controller-synthesis framework; however, this prior work does not consider dynamically changing constraints (e.g., a robot sensing and avoiding an obstacle). Consequently, the main theoretical contribution of this letter extends nonsmooth barrier functions to time-varying barrier functions with jumps. In a practical instantiation of the theoretical main results, this letter revisits a classic problem by formulating a collision-avoidance framework and composing it with a nominal controller. Experimental results show the efficacy of this framework on a light detection and ranging (LIDAR)-equipped differential-drive robot in a real-time obstacle-avoidance scenario.
doi_str_mv 10.1109/LRA.2019.2895125
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8625554</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8625554</ieee_id><sourcerecordid>2298394859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c338t-482a3581897e4530f927d781c8162b50c9710c49c7d8b130616c6cd31039df6d3</originalsourceid><addsrcrecordid>eNpNkF1LwzAUhoMoOHT3gjcBrzfz0TTJZR3OCUNlU7wsaZpiRtvUpBsU_PFmdIhX5_DwvOfAC8ANRnOMkbxfb7I5QVjOiZAME3YGJoRyPqM8Tc__7ZdgGsIOIYQZ4VSyCfhZDYW3JXxxbWic67_gg_LeGg-X-1b3NmL4aSPOuq62Wo2kd_DNu4Mq6gFuVWWgaku4cE3nQmQmrnVtQ1RhdnC2VK02sHIeblzheqvhdgi9acI1uKhUHcz0NK_Ax_LxfbGarV-fnhfZeqYpFf0sEURRJrCQ3CSMokoSXnKBtcApKRjSkmOkE6l5KQpMUYpTneqSYkRlWaUlvQJ3493Ou--9CX2-c3vfxpc5IVJQmQgmo4VGS3sXgjdV3nnbKD_kGOXHmvNYc36sOT_VHCO3Y8QaY_50kRLGWEJ_AbFEeN8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2298394859</pqid></control><display><type>article</type><title>Hybrid Nonsmooth Barrier Functions With Applications to Provably Safe and Composable Collision Avoidance for Robotic Systems</title><source>IEEE Electronic Library (IEL)</source><creator>Glotfelter, Paul ; Buckley, Ian ; Egerstedt, Magnus</creator><creatorcontrib>Glotfelter, Paul ; Buckley, Ian ; Egerstedt, Magnus</creatorcontrib><description>Robots are entering an age of ubiquity, and to operate effectively, these systems must typically satisfy a series of constraints (e.g., collision avoidance, obeying speed limits, maintaining connectivity). In addition, modern applications hinge on the completion of particular tasks, such as driving to a certain location or monitoring a crop patch. The dichotomy between satisfying constraints and completing objectives creates a need for constraint-satisfaction frameworks that are composable with a pre-existing primary objective. Barrier functions have recently emerged as a practical and the composable method for constraint satisfaction, and prior results demonstrate a system of Boolean logic for nonsmooth barrier functions as well as a composable controller-synthesis framework; however, this prior work does not consider dynamically changing constraints (e.g., a robot sensing and avoiding an obstacle). Consequently, the main theoretical contribution of this letter extends nonsmooth barrier functions to time-varying barrier functions with jumps. In a practical instantiation of the theoretical main results, this letter revisits a classic problem by formulating a collision-avoidance framework and composing it with a nominal controller. Experimental results show the efficacy of this framework on a light detection and ranging (LIDAR)-equipped differential-drive robot in a real-time obstacle-avoidance scenario.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2019.2895125</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Agriculture ; autonomous vehicle navigation ; Autonomous vehicles ; Boolean algebra ; Collision avoidance ; Controllers ; Lidar ; Optimization and optimal control ; Robot kinematics ; robot safety ; Robot sensors ; Speed limits ; System effectiveness</subject><ispartof>IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1303-1310</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c338t-482a3581897e4530f927d781c8162b50c9710c49c7d8b130616c6cd31039df6d3</citedby><cites>FETCH-LOGICAL-c338t-482a3581897e4530f927d781c8162b50c9710c49c7d8b130616c6cd31039df6d3</cites><orcidid>0000-0003-3054-8352 ; 0000-0002-2640-4973</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8625554$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8625554$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Glotfelter, Paul</creatorcontrib><creatorcontrib>Buckley, Ian</creatorcontrib><creatorcontrib>Egerstedt, Magnus</creatorcontrib><title>Hybrid Nonsmooth Barrier Functions With Applications to Provably Safe and Composable Collision Avoidance for Robotic Systems</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Robots are entering an age of ubiquity, and to operate effectively, these systems must typically satisfy a series of constraints (e.g., collision avoidance, obeying speed limits, maintaining connectivity). In addition, modern applications hinge on the completion of particular tasks, such as driving to a certain location or monitoring a crop patch. The dichotomy between satisfying constraints and completing objectives creates a need for constraint-satisfaction frameworks that are composable with a pre-existing primary objective. Barrier functions have recently emerged as a practical and the composable method for constraint satisfaction, and prior results demonstrate a system of Boolean logic for nonsmooth barrier functions as well as a composable controller-synthesis framework; however, this prior work does not consider dynamically changing constraints (e.g., a robot sensing and avoiding an obstacle). Consequently, the main theoretical contribution of this letter extends nonsmooth barrier functions to time-varying barrier functions with jumps. In a practical instantiation of the theoretical main results, this letter revisits a classic problem by formulating a collision-avoidance framework and composing it with a nominal controller. Experimental results show the efficacy of this framework on a light detection and ranging (LIDAR)-equipped differential-drive robot in a real-time obstacle-avoidance scenario.</description><subject>Agriculture</subject><subject>autonomous vehicle navigation</subject><subject>Autonomous vehicles</subject><subject>Boolean algebra</subject><subject>Collision avoidance</subject><subject>Controllers</subject><subject>Lidar</subject><subject>Optimization and optimal control</subject><subject>Robot kinematics</subject><subject>robot safety</subject><subject>Robot sensors</subject><subject>Speed limits</subject><subject>System effectiveness</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkF1LwzAUhoMoOHT3gjcBrzfz0TTJZR3OCUNlU7wsaZpiRtvUpBsU_PFmdIhX5_DwvOfAC8ANRnOMkbxfb7I5QVjOiZAME3YGJoRyPqM8Tc__7ZdgGsIOIYQZ4VSyCfhZDYW3JXxxbWic67_gg_LeGg-X-1b3NmL4aSPOuq62Wo2kd_DNu4Mq6gFuVWWgaku4cE3nQmQmrnVtQ1RhdnC2VK02sHIeblzheqvhdgi9acI1uKhUHcz0NK_Ax_LxfbGarV-fnhfZeqYpFf0sEURRJrCQ3CSMokoSXnKBtcApKRjSkmOkE6l5KQpMUYpTneqSYkRlWaUlvQJ3493Ou--9CX2-c3vfxpc5IVJQmQgmo4VGS3sXgjdV3nnbKD_kGOXHmvNYc36sOT_VHCO3Y8QaY_50kRLGWEJ_AbFEeN8</recordid><startdate>20190401</startdate><enddate>20190401</enddate><creator>Glotfelter, Paul</creator><creator>Buckley, Ian</creator><creator>Egerstedt, Magnus</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0003-3054-8352</orcidid><orcidid>https://orcid.org/0000-0002-2640-4973</orcidid></search><sort><creationdate>20190401</creationdate><title>Hybrid Nonsmooth Barrier Functions With Applications to Provably Safe and Composable Collision Avoidance for Robotic Systems</title><author>Glotfelter, Paul ; Buckley, Ian ; Egerstedt, Magnus</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c338t-482a3581897e4530f927d781c8162b50c9710c49c7d8b130616c6cd31039df6d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Agriculture</topic><topic>autonomous vehicle navigation</topic><topic>Autonomous vehicles</topic><topic>Boolean algebra</topic><topic>Collision avoidance</topic><topic>Controllers</topic><topic>Lidar</topic><topic>Optimization and optimal control</topic><topic>Robot kinematics</topic><topic>robot safety</topic><topic>Robot sensors</topic><topic>Speed limits</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Glotfelter, Paul</creatorcontrib><creatorcontrib>Buckley, Ian</creatorcontrib><creatorcontrib>Egerstedt, Magnus</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Glotfelter, Paul</au><au>Buckley, Ian</au><au>Egerstedt, Magnus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid Nonsmooth Barrier Functions With Applications to Provably Safe and Composable Collision Avoidance for Robotic Systems</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2019-04-01</date><risdate>2019</risdate><volume>4</volume><issue>2</issue><spage>1303</spage><epage>1310</epage><pages>1303-1310</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Robots are entering an age of ubiquity, and to operate effectively, these systems must typically satisfy a series of constraints (e.g., collision avoidance, obeying speed limits, maintaining connectivity). In addition, modern applications hinge on the completion of particular tasks, such as driving to a certain location or monitoring a crop patch. The dichotomy between satisfying constraints and completing objectives creates a need for constraint-satisfaction frameworks that are composable with a pre-existing primary objective. Barrier functions have recently emerged as a practical and the composable method for constraint satisfaction, and prior results demonstrate a system of Boolean logic for nonsmooth barrier functions as well as a composable controller-synthesis framework; however, this prior work does not consider dynamically changing constraints (e.g., a robot sensing and avoiding an obstacle). Consequently, the main theoretical contribution of this letter extends nonsmooth barrier functions to time-varying barrier functions with jumps. In a practical instantiation of the theoretical main results, this letter revisits a classic problem by formulating a collision-avoidance framework and composing it with a nominal controller. Experimental results show the efficacy of this framework on a light detection and ranging (LIDAR)-equipped differential-drive robot in a real-time obstacle-avoidance scenario.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2019.2895125</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-3054-8352</orcidid><orcidid>https://orcid.org/0000-0002-2640-4973</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2019-04, Vol.4 (2), p.1303-1310
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_8625554
source IEEE Electronic Library (IEL)
subjects Agriculture
autonomous vehicle navigation
Autonomous vehicles
Boolean algebra
Collision avoidance
Controllers
Lidar
Optimization and optimal control
Robot kinematics
robot safety
Robot sensors
Speed limits
System effectiveness
title Hybrid Nonsmooth Barrier Functions With Applications to Provably Safe and Composable Collision Avoidance for Robotic Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T03%3A43%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20Nonsmooth%20Barrier%20Functions%20With%20Applications%20to%20Provably%20Safe%20and%20Composable%20Collision%20Avoidance%20for%20Robotic%20Systems&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Glotfelter,%20Paul&rft.date=2019-04-01&rft.volume=4&rft.issue=2&rft.spage=1303&rft.epage=1310&rft.pages=1303-1310&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2019.2895125&rft_dat=%3Cproquest_RIE%3E2298394859%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2298394859&rft_id=info:pmid/&rft_ieee_id=8625554&rfr_iscdi=true