Optimal Shaping of the MMC Circulating Currents for Preventing AC-Side Power Oscillations From Propagating Into HVdc Grids

A constrained optimization problem based on the Lagrange multipliers method is formulated to derive the circulating current references of modular multilevel converters (MMCs) directly in abc coordinates. The resulting analytic expressions for calculating the circulating current reference signals are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE journal of emerging and selected topics in power electronics 2019-06, Vol.7 (2), p.1015-1030
Hauptverfasser: Bergna-Diaz, Gilbert, Suul, Jon Are, Berne, Erik, Vannier, Jean-Claude, Molinas, Marta
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1030
container_issue 2
container_start_page 1015
container_title IEEE journal of emerging and selected topics in power electronics
container_volume 7
creator Bergna-Diaz, Gilbert
Suul, Jon Are
Berne, Erik
Vannier, Jean-Claude
Molinas, Marta
description A constrained optimization problem based on the Lagrange multipliers method is formulated to derive the circulating current references of modular multilevel converters (MMCs) directly in abc coordinates. The resulting analytic expressions for calculating the circulating current reference signals are designed to eliminate oscillations in the dc-side power flow, independently of the ac-side operation of the MMC. As a result of the constrained optimization, the circulating currents are shaped to optimally utilize the degrees of freedom provided by the internal energy buffering capacity of the MMC, to effectively decouple the ac-grid conditions from the dc bus. This property of the proposed control method makes it especially suitable for preventing oscillations due to unbalanced ac-grid voltage conditions from propagating into multiterminal high-voltage dc systems. It is shown that the power flow at the dc-side of the MMC will be most effectively decoupled from ac-side transients if the desired steady-state power flow is imposed by acting directly on the circulating current references instead of by acting on the ac-side current references. The operation of an MMC controlled by the proposed approach is demonstrated by simulation studies, verifying the ability to keep the dc power flow free of second harmonic oscillations, independently of the power control objectives applied for calculating the ac-side current references of the converter.
doi_str_mv 10.1109/JESTPE.2019.2894677
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8625381</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8625381</ieee_id><sourcerecordid>2220122460</sourcerecordid><originalsourceid>FETCH-LOGICAL-c342t-33a15a055c6df1a4947b92b893325ffb2a5eb832120de9658c82005d1e95ca9d3</originalsourceid><addsrcrecordid>eNo9kFtrwjAYhsPYYOL8Bd4Edl2XQ9Mml1I8DUVBt9uSpqlWatMldWP79Uup-N18B973_eABYIzRBGMk3t5n-8NuNiEIiwnhIozi-AEMCI54EMWcPd7nOH4GI-fOyBcnTMR8AP62TVteZAX3J9mU9RGaArYnDTebBCalVddKtt05uVqr69bBwli4s_rbL919mgT7MtdwZ360hVunyqpzmNrBuTUXLzWNPPYZq7o1cPmZK7iwZe5ewFMhK6dHtz4EH_PZIVkG6-1ilUzXgaIhaQNKJWYSMaaivMAyFGGcCZJxQSlhRZERyXTGKcEE5VpEjCtOEGI51oIpKXI6BK99bmPN11W7Nj2bq639y5QQT42QMEJeRXuVssY5q4u0sR6M_U0xSjvOac857TinN87eNe5dpdb67uARYZRj-g-FCXla</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2220122460</pqid></control><display><type>article</type><title>Optimal Shaping of the MMC Circulating Currents for Preventing AC-Side Power Oscillations From Propagating Into HVdc Grids</title><source>IEL</source><creator>Bergna-Diaz, Gilbert ; Suul, Jon Are ; Berne, Erik ; Vannier, Jean-Claude ; Molinas, Marta</creator><creatorcontrib>Bergna-Diaz, Gilbert ; Suul, Jon Are ; Berne, Erik ; Vannier, Jean-Claude ; Molinas, Marta</creatorcontrib><description>A constrained optimization problem based on the Lagrange multipliers method is formulated to derive the circulating current references of modular multilevel converters (MMCs) directly in abc coordinates. The resulting analytic expressions for calculating the circulating current reference signals are designed to eliminate oscillations in the dc-side power flow, independently of the ac-side operation of the MMC. As a result of the constrained optimization, the circulating currents are shaped to optimally utilize the degrees of freedom provided by the internal energy buffering capacity of the MMC, to effectively decouple the ac-grid conditions from the dc bus. This property of the proposed control method makes it especially suitable for preventing oscillations due to unbalanced ac-grid voltage conditions from propagating into multiterminal high-voltage dc systems. It is shown that the power flow at the dc-side of the MMC will be most effectively decoupled from ac-side transients if the desired steady-state power flow is imposed by acting directly on the circulating current references instead of by acting on the ac-side current references. The operation of an MMC controlled by the proposed approach is demonstrated by simulation studies, verifying the ability to keep the dc power flow free of second harmonic oscillations, independently of the power control objectives applied for calculating the ac-side current references of the converter.</description><identifier>ISSN: 2168-6777</identifier><identifier>EISSN: 2168-6785</identifier><identifier>DOI: 10.1109/JESTPE.2019.2894677</identifier><identifier>CODEN: IJESN2</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Alternating current ; Circulating current control ; constrained optimization ; Coordinates ; Data buses ; Electric converters ; Electric potential ; energy balancing control ; Energy storage ; Equilibrium flow ; Harmonic oscillation ; High voltages ; high-voltage dc (HVdc) transmission ; HVDC transmission ; Internal energy ; Lagrange multiplier ; Lagrange multipliers method ; Mathematical analysis ; Metal matrix composites ; modular multilevel converters (MMCs) ; Optimization ; Oscillators ; Power control ; Power electronics ; Power flow ; Reference signals ; Steady-state ; Voltage control</subject><ispartof>IEEE journal of emerging and selected topics in power electronics, 2019-06, Vol.7 (2), p.1015-1030</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c342t-33a15a055c6df1a4947b92b893325ffb2a5eb832120de9658c82005d1e95ca9d3</citedby><cites>FETCH-LOGICAL-c342t-33a15a055c6df1a4947b92b893325ffb2a5eb832120de9658c82005d1e95ca9d3</cites><orcidid>0000-0002-8791-0917 ; 0000-0001-9664-879X ; 0000-0003-3491-636X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8625381$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids></links><search><creatorcontrib>Bergna-Diaz, Gilbert</creatorcontrib><creatorcontrib>Suul, Jon Are</creatorcontrib><creatorcontrib>Berne, Erik</creatorcontrib><creatorcontrib>Vannier, Jean-Claude</creatorcontrib><creatorcontrib>Molinas, Marta</creatorcontrib><title>Optimal Shaping of the MMC Circulating Currents for Preventing AC-Side Power Oscillations From Propagating Into HVdc Grids</title><title>IEEE journal of emerging and selected topics in power electronics</title><addtitle>JESTPE</addtitle><description>A constrained optimization problem based on the Lagrange multipliers method is formulated to derive the circulating current references of modular multilevel converters (MMCs) directly in abc coordinates. The resulting analytic expressions for calculating the circulating current reference signals are designed to eliminate oscillations in the dc-side power flow, independently of the ac-side operation of the MMC. As a result of the constrained optimization, the circulating currents are shaped to optimally utilize the degrees of freedom provided by the internal energy buffering capacity of the MMC, to effectively decouple the ac-grid conditions from the dc bus. This property of the proposed control method makes it especially suitable for preventing oscillations due to unbalanced ac-grid voltage conditions from propagating into multiterminal high-voltage dc systems. It is shown that the power flow at the dc-side of the MMC will be most effectively decoupled from ac-side transients if the desired steady-state power flow is imposed by acting directly on the circulating current references instead of by acting on the ac-side current references. The operation of an MMC controlled by the proposed approach is demonstrated by simulation studies, verifying the ability to keep the dc power flow free of second harmonic oscillations, independently of the power control objectives applied for calculating the ac-side current references of the converter.</description><subject>Alternating current</subject><subject>Circulating current control</subject><subject>constrained optimization</subject><subject>Coordinates</subject><subject>Data buses</subject><subject>Electric converters</subject><subject>Electric potential</subject><subject>energy balancing control</subject><subject>Energy storage</subject><subject>Equilibrium flow</subject><subject>Harmonic oscillation</subject><subject>High voltages</subject><subject>high-voltage dc (HVdc) transmission</subject><subject>HVDC transmission</subject><subject>Internal energy</subject><subject>Lagrange multiplier</subject><subject>Lagrange multipliers method</subject><subject>Mathematical analysis</subject><subject>Metal matrix composites</subject><subject>modular multilevel converters (MMCs)</subject><subject>Optimization</subject><subject>Oscillators</subject><subject>Power control</subject><subject>Power electronics</subject><subject>Power flow</subject><subject>Reference signals</subject><subject>Steady-state</subject><subject>Voltage control</subject><issn>2168-6777</issn><issn>2168-6785</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNo9kFtrwjAYhsPYYOL8Bd4Edl2XQ9Mml1I8DUVBt9uSpqlWatMldWP79Uup-N18B973_eABYIzRBGMk3t5n-8NuNiEIiwnhIozi-AEMCI54EMWcPd7nOH4GI-fOyBcnTMR8AP62TVteZAX3J9mU9RGaArYnDTebBCalVddKtt05uVqr69bBwli4s_rbL919mgT7MtdwZ360hVunyqpzmNrBuTUXLzWNPPYZq7o1cPmZK7iwZe5ewFMhK6dHtz4EH_PZIVkG6-1ilUzXgaIhaQNKJWYSMaaivMAyFGGcCZJxQSlhRZERyXTGKcEE5VpEjCtOEGI51oIpKXI6BK99bmPN11W7Nj2bq639y5QQT42QMEJeRXuVssY5q4u0sR6M_U0xSjvOac857TinN87eNe5dpdb67uARYZRj-g-FCXla</recordid><startdate>20190601</startdate><enddate>20190601</enddate><creator>Bergna-Diaz, Gilbert</creator><creator>Suul, Jon Are</creator><creator>Berne, Erik</creator><creator>Vannier, Jean-Claude</creator><creator>Molinas, Marta</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-8791-0917</orcidid><orcidid>https://orcid.org/0000-0001-9664-879X</orcidid><orcidid>https://orcid.org/0000-0003-3491-636X</orcidid></search><sort><creationdate>20190601</creationdate><title>Optimal Shaping of the MMC Circulating Currents for Preventing AC-Side Power Oscillations From Propagating Into HVdc Grids</title><author>Bergna-Diaz, Gilbert ; Suul, Jon Are ; Berne, Erik ; Vannier, Jean-Claude ; Molinas, Marta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c342t-33a15a055c6df1a4947b92b893325ffb2a5eb832120de9658c82005d1e95ca9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Alternating current</topic><topic>Circulating current control</topic><topic>constrained optimization</topic><topic>Coordinates</topic><topic>Data buses</topic><topic>Electric converters</topic><topic>Electric potential</topic><topic>energy balancing control</topic><topic>Energy storage</topic><topic>Equilibrium flow</topic><topic>Harmonic oscillation</topic><topic>High voltages</topic><topic>high-voltage dc (HVdc) transmission</topic><topic>HVDC transmission</topic><topic>Internal energy</topic><topic>Lagrange multiplier</topic><topic>Lagrange multipliers method</topic><topic>Mathematical analysis</topic><topic>Metal matrix composites</topic><topic>modular multilevel converters (MMCs)</topic><topic>Optimization</topic><topic>Oscillators</topic><topic>Power control</topic><topic>Power electronics</topic><topic>Power flow</topic><topic>Reference signals</topic><topic>Steady-state</topic><topic>Voltage control</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bergna-Diaz, Gilbert</creatorcontrib><creatorcontrib>Suul, Jon Are</creatorcontrib><creatorcontrib>Berne, Erik</creatorcontrib><creatorcontrib>Vannier, Jean-Claude</creatorcontrib><creatorcontrib>Molinas, Marta</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bergna-Diaz, Gilbert</au><au>Suul, Jon Are</au><au>Berne, Erik</au><au>Vannier, Jean-Claude</au><au>Molinas, Marta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimal Shaping of the MMC Circulating Currents for Preventing AC-Side Power Oscillations From Propagating Into HVdc Grids</atitle><jtitle>IEEE journal of emerging and selected topics in power electronics</jtitle><stitle>JESTPE</stitle><date>2019-06-01</date><risdate>2019</risdate><volume>7</volume><issue>2</issue><spage>1015</spage><epage>1030</epage><pages>1015-1030</pages><issn>2168-6777</issn><eissn>2168-6785</eissn><coden>IJESN2</coden><abstract>A constrained optimization problem based on the Lagrange multipliers method is formulated to derive the circulating current references of modular multilevel converters (MMCs) directly in abc coordinates. The resulting analytic expressions for calculating the circulating current reference signals are designed to eliminate oscillations in the dc-side power flow, independently of the ac-side operation of the MMC. As a result of the constrained optimization, the circulating currents are shaped to optimally utilize the degrees of freedom provided by the internal energy buffering capacity of the MMC, to effectively decouple the ac-grid conditions from the dc bus. This property of the proposed control method makes it especially suitable for preventing oscillations due to unbalanced ac-grid voltage conditions from propagating into multiterminal high-voltage dc systems. It is shown that the power flow at the dc-side of the MMC will be most effectively decoupled from ac-side transients if the desired steady-state power flow is imposed by acting directly on the circulating current references instead of by acting on the ac-side current references. The operation of an MMC controlled by the proposed approach is demonstrated by simulation studies, verifying the ability to keep the dc power flow free of second harmonic oscillations, independently of the power control objectives applied for calculating the ac-side current references of the converter.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JESTPE.2019.2894677</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-8791-0917</orcidid><orcidid>https://orcid.org/0000-0001-9664-879X</orcidid><orcidid>https://orcid.org/0000-0003-3491-636X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-6777
ispartof IEEE journal of emerging and selected topics in power electronics, 2019-06, Vol.7 (2), p.1015-1030
issn 2168-6777
2168-6785
language eng
recordid cdi_ieee_primary_8625381
source IEL
subjects Alternating current
Circulating current control
constrained optimization
Coordinates
Data buses
Electric converters
Electric potential
energy balancing control
Energy storage
Equilibrium flow
Harmonic oscillation
High voltages
high-voltage dc (HVdc) transmission
HVDC transmission
Internal energy
Lagrange multiplier
Lagrange multipliers method
Mathematical analysis
Metal matrix composites
modular multilevel converters (MMCs)
Optimization
Oscillators
Power control
Power electronics
Power flow
Reference signals
Steady-state
Voltage control
title Optimal Shaping of the MMC Circulating Currents for Preventing AC-Side Power Oscillations From Propagating Into HVdc Grids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T10%3A46%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimal%20Shaping%20of%20the%20MMC%20Circulating%20Currents%20for%20Preventing%20AC-Side%20Power%20Oscillations%20From%20Propagating%20Into%20HVdc%20Grids&rft.jtitle=IEEE%20journal%20of%20emerging%20and%20selected%20topics%20in%20power%20electronics&rft.au=Bergna-Diaz,%20Gilbert&rft.date=2019-06-01&rft.volume=7&rft.issue=2&rft.spage=1015&rft.epage=1030&rft.pages=1015-1030&rft.issn=2168-6777&rft.eissn=2168-6785&rft.coden=IJESN2&rft_id=info:doi/10.1109/JESTPE.2019.2894677&rft_dat=%3Cproquest_ieee_%3E2220122460%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2220122460&rft_id=info:pmid/&rft_ieee_id=8625381&rfr_iscdi=true