A Survey on 3D Object Detection Methods for Autonomous Driving Applications

An autonomous vehicle (AV) requires an accurate perception of its surrounding environment to operate reliably. The perception system of an AV, which normally employs machine learning (e.g., deep learning), transforms sensory data into semantic information that enables autonomous driving. Object dete...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on intelligent transportation systems 2019-10, Vol.20 (10), p.3782-3795
Hauptverfasser: Arnold, Eduardo, Al-Jarrah, Omar Y., Dianati, Mehrdad, Fallah, Saber, Oxtoby, David, Mouzakitis, Alex
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3795
container_issue 10
container_start_page 3782
container_title IEEE transactions on intelligent transportation systems
container_volume 20
creator Arnold, Eduardo
Al-Jarrah, Omar Y.
Dianati, Mehrdad
Fallah, Saber
Oxtoby, David
Mouzakitis, Alex
description An autonomous vehicle (AV) requires an accurate perception of its surrounding environment to operate reliably. The perception system of an AV, which normally employs machine learning (e.g., deep learning), transforms sensory data into semantic information that enables autonomous driving. Object detection is a fundamental function of this perception system, which has been tackled by several works, most of them using 2D detection methods. However, the 2D methods do not provide depth information, which is required for driving tasks, such as path planning, collision avoidance, and so on. Alternatively, the 3D object detection methods introduce a third dimension that reveals more detailed object's size and location information. Nonetheless, the detection accuracy of such methods needs to be improved. To the best of our knowledge, this is the first survey on 3D object detection methods used for autonomous driving applications. This paper presents an overview of 3D object detection methods and prevalently used sensors and datasets in AVs. It then discusses and categorizes the recent works based on sensors modalities into monocular, point cloud-based, and fusion methods. We then summarize the results of the surveyed works and identify the research gaps and future research directions.
doi_str_mv 10.1109/TITS.2019.2892405
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8621614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8621614</ieee_id><sourcerecordid>2300330994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-316269a9feb6503562f4faa43a5ae7193605188a8fbcde0d24777e266397d2d23</originalsourceid><addsrcrecordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6s1_JHkPrR7HSQ-t52SYbTWmzdTcp9N-bUPH0DsPzzsBDyD3CBBH003q-Xk0YoJ6wTDMB8oKMUMosAUB1OcxMJBokXJObGLf9VkjEEXnP6aoLR3eivqF8RpebrStaOnNtH3W_-3Dtty8jrXygedf6xu99F-ks1Me6-aL54bCrCzug8ZZcVXYX3d1fjsnny_N6-pYslq_zab5ICiGhTTgqprTVldsoCVwqVonKWsGttC5FzRVIzDKbVZuidFAykaapY0pxnZasZHxMHs93D8H_dC62Zuu70PQvDeMAnIPWoqfwTBXBxxhcZQ6h3ttwMghmcGYGZ2ZwZv6c9Z2Hc6d2zv3zmWKoUPBfnedmeA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2300330994</pqid></control><display><type>article</type><title>A Survey on 3D Object Detection Methods for Autonomous Driving Applications</title><source>IEEE Electronic Library (IEL)</source><creator>Arnold, Eduardo ; Al-Jarrah, Omar Y. ; Dianati, Mehrdad ; Fallah, Saber ; Oxtoby, David ; Mouzakitis, Alex</creator><creatorcontrib>Arnold, Eduardo ; Al-Jarrah, Omar Y. ; Dianati, Mehrdad ; Fallah, Saber ; Oxtoby, David ; Mouzakitis, Alex</creatorcontrib><description>An autonomous vehicle (AV) requires an accurate perception of its surrounding environment to operate reliably. The perception system of an AV, which normally employs machine learning (e.g., deep learning), transforms sensory data into semantic information that enables autonomous driving. Object detection is a fundamental function of this perception system, which has been tackled by several works, most of them using 2D detection methods. However, the 2D methods do not provide depth information, which is required for driving tasks, such as path planning, collision avoidance, and so on. Alternatively, the 3D object detection methods introduce a third dimension that reveals more detailed object's size and location information. Nonetheless, the detection accuracy of such methods needs to be improved. To the best of our knowledge, this is the first survey on 3D object detection methods used for autonomous driving applications. This paper presents an overview of 3D object detection methods and prevalently used sensors and datasets in AVs. It then discusses and categorizes the recent works based on sensors modalities into monocular, point cloud-based, and fusion methods. We then summarize the results of the surveyed works and identify the research gaps and future research directions.</description><identifier>ISSN: 1524-9050</identifier><identifier>EISSN: 1558-0016</identifier><identifier>DOI: 10.1109/TITS.2019.2892405</identifier><identifier>CODEN: ITISFG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Autonomous vehicles ; Cameras ; Collision avoidance ; computer vision ; deep learning ; Identification methods ; intelligent vehicles ; Land mines ; Laser radar ; Machine learning ; Object detection ; Object recognition ; Path planning ; Perception ; Product development ; Sensors ; Three-dimensional displays ; Two dimensional displays</subject><ispartof>IEEE transactions on intelligent transportation systems, 2019-10, Vol.20 (10), p.3782-3795</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-316269a9feb6503562f4faa43a5ae7193605188a8fbcde0d24777e266397d2d23</citedby><cites>FETCH-LOGICAL-c450t-316269a9feb6503562f4faa43a5ae7193605188a8fbcde0d24777e266397d2d23</cites><orcidid>0000-0001-5119-4499 ; 0000-0001-7896-7252 ; 0000-0002-6212-9307 ; 0000-0002-1298-1040</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8621614$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27922,27923,54756</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8621614$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Arnold, Eduardo</creatorcontrib><creatorcontrib>Al-Jarrah, Omar Y.</creatorcontrib><creatorcontrib>Dianati, Mehrdad</creatorcontrib><creatorcontrib>Fallah, Saber</creatorcontrib><creatorcontrib>Oxtoby, David</creatorcontrib><creatorcontrib>Mouzakitis, Alex</creatorcontrib><title>A Survey on 3D Object Detection Methods for Autonomous Driving Applications</title><title>IEEE transactions on intelligent transportation systems</title><addtitle>TITS</addtitle><description>An autonomous vehicle (AV) requires an accurate perception of its surrounding environment to operate reliably. The perception system of an AV, which normally employs machine learning (e.g., deep learning), transforms sensory data into semantic information that enables autonomous driving. Object detection is a fundamental function of this perception system, which has been tackled by several works, most of them using 2D detection methods. However, the 2D methods do not provide depth information, which is required for driving tasks, such as path planning, collision avoidance, and so on. Alternatively, the 3D object detection methods introduce a third dimension that reveals more detailed object's size and location information. Nonetheless, the detection accuracy of such methods needs to be improved. To the best of our knowledge, this is the first survey on 3D object detection methods used for autonomous driving applications. This paper presents an overview of 3D object detection methods and prevalently used sensors and datasets in AVs. It then discusses and categorizes the recent works based on sensors modalities into monocular, point cloud-based, and fusion methods. We then summarize the results of the surveyed works and identify the research gaps and future research directions.</description><subject>Autonomous vehicles</subject><subject>Cameras</subject><subject>Collision avoidance</subject><subject>computer vision</subject><subject>deep learning</subject><subject>Identification methods</subject><subject>intelligent vehicles</subject><subject>Land mines</subject><subject>Laser radar</subject><subject>Machine learning</subject><subject>Object detection</subject><subject>Object recognition</subject><subject>Path planning</subject><subject>Perception</subject><subject>Product development</subject><subject>Sensors</subject><subject>Three-dimensional displays</subject><subject>Two dimensional displays</subject><issn>1524-9050</issn><issn>1558-0016</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNo9kE1Lw0AQhhdRsFZ_gHhZ8Jw6s1_JHkPrR7HSQ-t52SYbTWmzdTcp9N-bUPH0DsPzzsBDyD3CBBH003q-Xk0YoJ6wTDMB8oKMUMosAUB1OcxMJBokXJObGLf9VkjEEXnP6aoLR3eivqF8RpebrStaOnNtH3W_-3Dtty8jrXygedf6xu99F-ks1Me6-aL54bCrCzug8ZZcVXYX3d1fjsnny_N6-pYslq_zab5ICiGhTTgqprTVldsoCVwqVonKWsGttC5FzRVIzDKbVZuidFAykaapY0pxnZasZHxMHs93D8H_dC62Zuu70PQvDeMAnIPWoqfwTBXBxxhcZQ6h3ttwMghmcGYGZ2ZwZv6c9Z2Hc6d2zv3zmWKoUPBfnedmeA</recordid><startdate>20191001</startdate><enddate>20191001</enddate><creator>Arnold, Eduardo</creator><creator>Al-Jarrah, Omar Y.</creator><creator>Dianati, Mehrdad</creator><creator>Fallah, Saber</creator><creator>Oxtoby, David</creator><creator>Mouzakitis, Alex</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5119-4499</orcidid><orcidid>https://orcid.org/0000-0001-7896-7252</orcidid><orcidid>https://orcid.org/0000-0002-6212-9307</orcidid><orcidid>https://orcid.org/0000-0002-1298-1040</orcidid></search><sort><creationdate>20191001</creationdate><title>A Survey on 3D Object Detection Methods for Autonomous Driving Applications</title><author>Arnold, Eduardo ; Al-Jarrah, Omar Y. ; Dianati, Mehrdad ; Fallah, Saber ; Oxtoby, David ; Mouzakitis, Alex</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-316269a9feb6503562f4faa43a5ae7193605188a8fbcde0d24777e266397d2d23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Autonomous vehicles</topic><topic>Cameras</topic><topic>Collision avoidance</topic><topic>computer vision</topic><topic>deep learning</topic><topic>Identification methods</topic><topic>intelligent vehicles</topic><topic>Land mines</topic><topic>Laser radar</topic><topic>Machine learning</topic><topic>Object detection</topic><topic>Object recognition</topic><topic>Path planning</topic><topic>Perception</topic><topic>Product development</topic><topic>Sensors</topic><topic>Three-dimensional displays</topic><topic>Two dimensional displays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arnold, Eduardo</creatorcontrib><creatorcontrib>Al-Jarrah, Omar Y.</creatorcontrib><creatorcontrib>Dianati, Mehrdad</creatorcontrib><creatorcontrib>Fallah, Saber</creatorcontrib><creatorcontrib>Oxtoby, David</creatorcontrib><creatorcontrib>Mouzakitis, Alex</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on intelligent transportation systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Arnold, Eduardo</au><au>Al-Jarrah, Omar Y.</au><au>Dianati, Mehrdad</au><au>Fallah, Saber</au><au>Oxtoby, David</au><au>Mouzakitis, Alex</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Survey on 3D Object Detection Methods for Autonomous Driving Applications</atitle><jtitle>IEEE transactions on intelligent transportation systems</jtitle><stitle>TITS</stitle><date>2019-10-01</date><risdate>2019</risdate><volume>20</volume><issue>10</issue><spage>3782</spage><epage>3795</epage><pages>3782-3795</pages><issn>1524-9050</issn><eissn>1558-0016</eissn><coden>ITISFG</coden><abstract>An autonomous vehicle (AV) requires an accurate perception of its surrounding environment to operate reliably. The perception system of an AV, which normally employs machine learning (e.g., deep learning), transforms sensory data into semantic information that enables autonomous driving. Object detection is a fundamental function of this perception system, which has been tackled by several works, most of them using 2D detection methods. However, the 2D methods do not provide depth information, which is required for driving tasks, such as path planning, collision avoidance, and so on. Alternatively, the 3D object detection methods introduce a third dimension that reveals more detailed object's size and location information. Nonetheless, the detection accuracy of such methods needs to be improved. To the best of our knowledge, this is the first survey on 3D object detection methods used for autonomous driving applications. This paper presents an overview of 3D object detection methods and prevalently used sensors and datasets in AVs. It then discusses and categorizes the recent works based on sensors modalities into monocular, point cloud-based, and fusion methods. We then summarize the results of the surveyed works and identify the research gaps and future research directions.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TITS.2019.2892405</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0001-5119-4499</orcidid><orcidid>https://orcid.org/0000-0001-7896-7252</orcidid><orcidid>https://orcid.org/0000-0002-6212-9307</orcidid><orcidid>https://orcid.org/0000-0002-1298-1040</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1524-9050
ispartof IEEE transactions on intelligent transportation systems, 2019-10, Vol.20 (10), p.3782-3795
issn 1524-9050
1558-0016
language eng
recordid cdi_ieee_primary_8621614
source IEEE Electronic Library (IEL)
subjects Autonomous vehicles
Cameras
Collision avoidance
computer vision
deep learning
Identification methods
intelligent vehicles
Land mines
Laser radar
Machine learning
Object detection
Object recognition
Path planning
Perception
Product development
Sensors
Three-dimensional displays
Two dimensional displays
title A Survey on 3D Object Detection Methods for Autonomous Driving Applications
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T20%3A30%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Survey%20on%203D%20Object%20Detection%20Methods%20for%20Autonomous%20Driving%20Applications&rft.jtitle=IEEE%20transactions%20on%20intelligent%20transportation%20systems&rft.au=Arnold,%20Eduardo&rft.date=2019-10-01&rft.volume=20&rft.issue=10&rft.spage=3782&rft.epage=3795&rft.pages=3782-3795&rft.issn=1524-9050&rft.eissn=1558-0016&rft.coden=ITISFG&rft_id=info:doi/10.1109/TITS.2019.2892405&rft_dat=%3Cproquest_RIE%3E2300330994%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2300330994&rft_id=info:pmid/&rft_ieee_id=8621614&rfr_iscdi=true