Statistical estimation of unreliable features for robust speech recognition

This paper addresses the problem of robust speech recognition in noisy conditions in the framework of hidden Markov models (HMMs) and missing feature techniques. It presents a new statistical approach to detection and estimation of unreliable features based on a probabilistic measure and Gaussian mi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Renevey, P., Drygajlo, A.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1734 vol.3
container_issue
container_start_page 1731
container_title
container_volume 3
creator Renevey, P.
Drygajlo, A.
description This paper addresses the problem of robust speech recognition in noisy conditions in the framework of hidden Markov models (HMMs) and missing feature techniques. It presents a new statistical approach to detection and estimation of unreliable features based on a probabilistic measure and Gaussian mixture model (GMM). In the estimation process, the GMM is compensated using parameters of the statistical model of additive background noise. The GMM means are used to replace the unreliable features. The GMM based technique is less complex than the corresponding HMM based estimation and gives similar improvement in the recognition performance. Once unreliable features are replaced by the estimated clean speech features, the entire set of spectral features can be transformed to the other feature domain characterized by higher baseline recognition rate (e.g. MFCCs) for final recognition using continuous density hidden Markov models (CDHMMs) with diagonal covariance matrices.
doi_str_mv 10.1109/ICASSP.2000.862086
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_862086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>862086</ieee_id><sourcerecordid>862086</sourcerecordid><originalsourceid>FETCH-LOGICAL-i216t-d5b1b4fe940dbf369d413a5c9c083b901b14065db84cc18eadcee822eab987aa3</originalsourceid><addsrcrecordid>eNotkNtKxDAYhIMHsK77AnuVF2j9c2iaXMriCRcUquDdkqR_tFLbJUkvfHsrKwwMc_ENwxCyYVAxBub6cXvTti8VB4BKKw5anZCCi8aUzMD7KVmbRsMiobgR_IwUrOZQKibNBblM6WvhdCN1QZ7abHOfcu_tQHHx7yVOI50CnceIQ2_dgDSgzXPERMMUaZzcnDJNB0T_SSP66WPs_6Arch7skHD97yvydnf7un0od8_3y-Bd2XOmctnVjjkZ0EjoXBDKdJIJW3vjQQtngDkmQdWd09J7ptF2HlFzjtYZ3VgrVmRz7O0RcX-Iy-b4sz_eIH4B-MBRrg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Statistical estimation of unreliable features for robust speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Renevey, P. ; Drygajlo, A.</creator><creatorcontrib>Renevey, P. ; Drygajlo, A.</creatorcontrib><description>This paper addresses the problem of robust speech recognition in noisy conditions in the framework of hidden Markov models (HMMs) and missing feature techniques. It presents a new statistical approach to detection and estimation of unreliable features based on a probabilistic measure and Gaussian mixture model (GMM). In the estimation process, the GMM is compensated using parameters of the statistical model of additive background noise. The GMM means are used to replace the unreliable features. The GMM based technique is less complex than the corresponding HMM based estimation and gives similar improvement in the recognition performance. Once unreliable features are replaced by the estimated clean speech features, the entire set of spectral features can be transformed to the other feature domain characterized by higher baseline recognition rate (e.g. MFCCs) for final recognition using continuous density hidden Markov models (CDHMMs) with diagonal covariance matrices.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780362932</identifier><identifier>ISBN: 0780362934</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2000.862086</identifier><language>eng</language><publisher>IEEE</publisher><subject>Character recognition ; Computer vision ; Frequency estimation ; Hidden Markov models ; Noise figure ; Robustness ; Signal to noise ratio ; Speaker recognition ; Speech enhancement ; Speech recognition</subject><ispartof>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.3, p.1731-1734 vol.3</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/862086$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,4048,4049,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/862086$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Renevey, P.</creatorcontrib><creatorcontrib>Drygajlo, A.</creatorcontrib><title>Statistical estimation of unreliable features for robust speech recognition</title><title>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</title><addtitle>ICASSP</addtitle><description>This paper addresses the problem of robust speech recognition in noisy conditions in the framework of hidden Markov models (HMMs) and missing feature techniques. It presents a new statistical approach to detection and estimation of unreliable features based on a probabilistic measure and Gaussian mixture model (GMM). In the estimation process, the GMM is compensated using parameters of the statistical model of additive background noise. The GMM means are used to replace the unreliable features. The GMM based technique is less complex than the corresponding HMM based estimation and gives similar improvement in the recognition performance. Once unreliable features are replaced by the estimated clean speech features, the entire set of spectral features can be transformed to the other feature domain characterized by higher baseline recognition rate (e.g. MFCCs) for final recognition using continuous density hidden Markov models (CDHMMs) with diagonal covariance matrices.</description><subject>Character recognition</subject><subject>Computer vision</subject><subject>Frequency estimation</subject><subject>Hidden Markov models</subject><subject>Noise figure</subject><subject>Robustness</subject><subject>Signal to noise ratio</subject><subject>Speaker recognition</subject><subject>Speech enhancement</subject><subject>Speech recognition</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780362932</isbn><isbn>0780362934</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkNtKxDAYhIMHsK77AnuVF2j9c2iaXMriCRcUquDdkqR_tFLbJUkvfHsrKwwMc_ENwxCyYVAxBub6cXvTti8VB4BKKw5anZCCi8aUzMD7KVmbRsMiobgR_IwUrOZQKibNBblM6WvhdCN1QZ7abHOfcu_tQHHx7yVOI50CnceIQ2_dgDSgzXPERMMUaZzcnDJNB0T_SSP66WPs_6Arch7skHD97yvydnf7un0od8_3y-Bd2XOmctnVjjkZ0EjoXBDKdJIJW3vjQQtngDkmQdWd09J7ptF2HlFzjtYZ3VgrVmRz7O0RcX-Iy-b4sz_eIH4B-MBRrg</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Renevey, P.</creator><creator>Drygajlo, A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>Statistical estimation of unreliable features for robust speech recognition</title><author>Renevey, P. ; Drygajlo, A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i216t-d5b1b4fe940dbf369d413a5c9c083b901b14065db84cc18eadcee822eab987aa3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Character recognition</topic><topic>Computer vision</topic><topic>Frequency estimation</topic><topic>Hidden Markov models</topic><topic>Noise figure</topic><topic>Robustness</topic><topic>Signal to noise ratio</topic><topic>Speaker recognition</topic><topic>Speech enhancement</topic><topic>Speech recognition</topic><toplevel>online_resources</toplevel><creatorcontrib>Renevey, P.</creatorcontrib><creatorcontrib>Drygajlo, A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Renevey, P.</au><au>Drygajlo, A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Statistical estimation of unreliable features for robust speech recognition</atitle><btitle>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</btitle><stitle>ICASSP</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>1731</spage><epage>1734 vol.3</epage><pages>1731-1734 vol.3</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780362932</isbn><isbn>0780362934</isbn><abstract>This paper addresses the problem of robust speech recognition in noisy conditions in the framework of hidden Markov models (HMMs) and missing feature techniques. It presents a new statistical approach to detection and estimation of unreliable features based on a probabilistic measure and Gaussian mixture model (GMM). In the estimation process, the GMM is compensated using parameters of the statistical model of additive background noise. The GMM means are used to replace the unreliable features. The GMM based technique is less complex than the corresponding HMM based estimation and gives similar improvement in the recognition performance. Once unreliable features are replaced by the estimated clean speech features, the entire set of spectral features can be transformed to the other feature domain characterized by higher baseline recognition rate (e.g. MFCCs) for final recognition using continuous density hidden Markov models (CDHMMs) with diagonal covariance matrices.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2000.862086</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.3, p.1731-1734 vol.3
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_862086
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Character recognition
Computer vision
Frequency estimation
Hidden Markov models
Noise figure
Robustness
Signal to noise ratio
Speaker recognition
Speech enhancement
Speech recognition
title Statistical estimation of unreliable features for robust speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T02%3A05%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Statistical%20estimation%20of%20unreliable%20features%20for%20robust%20speech%20recognition&rft.btitle=2000%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings%20(Cat.%20No.00CH37100)&rft.au=Renevey,%20P.&rft.date=2000&rft.volume=3&rft.spage=1731&rft.epage=1734%20vol.3&rft.pages=1731-1734%20vol.3&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780362932&rft.isbn_list=0780362934&rft_id=info:doi/10.1109/ICASSP.2000.862086&rft_dat=%3Cieee_6IE%3E862086%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=862086&rfr_iscdi=true