An optimal Bhattacharyya centroid algorithm for Gaussian clustering with applications in automatic speech recognition

The problem of clustering Gaussian distributions can be effectively solved by standard vector quantization algorithms where the metric is defined by the Bhattacharyya distance. This paper presents a novel algorithm for computing the optimal centroid for a cluster of Gaussian distributions according...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Rigazio, L., Tsakam, B., Junqua, J.-C.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1602 vol.3
container_issue
container_start_page 1599
container_title
container_volume 3
creator Rigazio, L.
Tsakam, B.
Junqua, J.-C.
description The problem of clustering Gaussian distributions can be effectively solved by standard vector quantization algorithms where the metric is defined by the Bhattacharyya distance. This paper presents a novel algorithm for computing the optimal centroid for a cluster of Gaussian distributions according to the Bhattacharyya metric. We show that this centroid maximizes an upper bound on the probability of representing the population modeled by the distributions associated with the cluster. The proposed method is evaluated in clustering distributions of hidden Markov model speech recognizers to reduce the overall memory consumption and runtime complexity of the decoding. Experimental results show that, depending on the task, the number of distributions can be reduced by a factor of 2 to 6 with an increase in recognition accuracy. When compared to a maximum likelihood centroid, the Bhattacharyya centroid provides a 13% error rate reduction in a 2k word recognition task.
doi_str_mv 10.1109/ICASSP.2000.861998
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_861998</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>861998</ieee_id><sourcerecordid>861998</sourcerecordid><originalsourceid>FETCH-LOGICAL-i172t-c6cd3a5909e4a24fabe6ce98a07aa94f7c3cf3e546142662da7faf17ee38c3383</originalsourceid><addsrcrecordid>eNotkN1KAzEQhYM_YK19gV7lBXbNz3aTXNaiVSgoVMG7Mqaz3cg2WZIs0rd3pcLAcDhnDnxDyJyzknNm7l9Wy-32rRSMsVLX3Bh9QSZCKlNwwz4vycwozcaRtTBSXJEJXwhW1LwyN-Q2pe_xTqtKT8iw9DT02R2how8t5Ay2hXg6AbXocwxuT6E7hOhye6RNiHQNQ0oOPLXdkDJG5w_0Z3Qp9H3nLGQXfKLOUxhyOI7S0tQj2pZGtOHg3V_gjlw30CWc_e8p-Xh6fF89F5vX9Yi2KRxXIhe2tnsJC8MMViCqBr6wtmg0MAVgqkZZaRuJi2oEE3Ut9qAaaLhClNpKqeWUzM-9DhF3fRwx42l3fpj8Be3IYaI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>An optimal Bhattacharyya centroid algorithm for Gaussian clustering with applications in automatic speech recognition</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rigazio, L. ; Tsakam, B. ; Junqua, J.-C.</creator><creatorcontrib>Rigazio, L. ; Tsakam, B. ; Junqua, J.-C.</creatorcontrib><description>The problem of clustering Gaussian distributions can be effectively solved by standard vector quantization algorithms where the metric is defined by the Bhattacharyya distance. This paper presents a novel algorithm for computing the optimal centroid for a cluster of Gaussian distributions according to the Bhattacharyya metric. We show that this centroid maximizes an upper bound on the probability of representing the population modeled by the distributions associated with the cluster. The proposed method is evaluated in clustering distributions of hidden Markov model speech recognizers to reduce the overall memory consumption and runtime complexity of the decoding. Experimental results show that, depending on the task, the number of distributions can be reduced by a factor of 2 to 6 with an increase in recognition accuracy. When compared to a maximum likelihood centroid, the Bhattacharyya centroid provides a 13% error rate reduction in a 2k word recognition task.</description><identifier>ISSN: 1520-6149</identifier><identifier>ISBN: 9780780362932</identifier><identifier>ISBN: 0780362934</identifier><identifier>EISSN: 2379-190X</identifier><identifier>DOI: 10.1109/ICASSP.2000.861998</identifier><language>eng</language><publisher>IEEE</publisher><subject>Clustering algorithms ; Distributed computing ; Gaussian distribution ; Hidden Markov models ; Maximum likelihood decoding ; Runtime ; Speech analysis ; Speech recognition ; Upper bound ; Vector quantization</subject><ispartof>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.3, p.1599-1602 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/861998$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/861998$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rigazio, L.</creatorcontrib><creatorcontrib>Tsakam, B.</creatorcontrib><creatorcontrib>Junqua, J.-C.</creatorcontrib><title>An optimal Bhattacharyya centroid algorithm for Gaussian clustering with applications in automatic speech recognition</title><title>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</title><addtitle>ICASSP</addtitle><description>The problem of clustering Gaussian distributions can be effectively solved by standard vector quantization algorithms where the metric is defined by the Bhattacharyya distance. This paper presents a novel algorithm for computing the optimal centroid for a cluster of Gaussian distributions according to the Bhattacharyya metric. We show that this centroid maximizes an upper bound on the probability of representing the population modeled by the distributions associated with the cluster. The proposed method is evaluated in clustering distributions of hidden Markov model speech recognizers to reduce the overall memory consumption and runtime complexity of the decoding. Experimental results show that, depending on the task, the number of distributions can be reduced by a factor of 2 to 6 with an increase in recognition accuracy. When compared to a maximum likelihood centroid, the Bhattacharyya centroid provides a 13% error rate reduction in a 2k word recognition task.</description><subject>Clustering algorithms</subject><subject>Distributed computing</subject><subject>Gaussian distribution</subject><subject>Hidden Markov models</subject><subject>Maximum likelihood decoding</subject><subject>Runtime</subject><subject>Speech analysis</subject><subject>Speech recognition</subject><subject>Upper bound</subject><subject>Vector quantization</subject><issn>1520-6149</issn><issn>2379-190X</issn><isbn>9780780362932</isbn><isbn>0780362934</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2000</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkN1KAzEQhYM_YK19gV7lBXbNz3aTXNaiVSgoVMG7Mqaz3cg2WZIs0rd3pcLAcDhnDnxDyJyzknNm7l9Wy-32rRSMsVLX3Bh9QSZCKlNwwz4vycwozcaRtTBSXJEJXwhW1LwyN-Q2pe_xTqtKT8iw9DT02R2how8t5Ay2hXg6AbXocwxuT6E7hOhye6RNiHQNQ0oOPLXdkDJG5w_0Z3Qp9H3nLGQXfKLOUxhyOI7S0tQj2pZGtOHg3V_gjlw30CWc_e8p-Xh6fF89F5vX9Yi2KRxXIhe2tnsJC8MMViCqBr6wtmg0MAVgqkZZaRuJi2oEE3Ut9qAaaLhClNpKqeWUzM-9DhF3fRwx42l3fpj8Be3IYaI</recordid><startdate>2000</startdate><enddate>2000</enddate><creator>Rigazio, L.</creator><creator>Tsakam, B.</creator><creator>Junqua, J.-C.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2000</creationdate><title>An optimal Bhattacharyya centroid algorithm for Gaussian clustering with applications in automatic speech recognition</title><author>Rigazio, L. ; Tsakam, B. ; Junqua, J.-C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i172t-c6cd3a5909e4a24fabe6ce98a07aa94f7c3cf3e546142662da7faf17ee38c3383</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Clustering algorithms</topic><topic>Distributed computing</topic><topic>Gaussian distribution</topic><topic>Hidden Markov models</topic><topic>Maximum likelihood decoding</topic><topic>Runtime</topic><topic>Speech analysis</topic><topic>Speech recognition</topic><topic>Upper bound</topic><topic>Vector quantization</topic><toplevel>online_resources</toplevel><creatorcontrib>Rigazio, L.</creatorcontrib><creatorcontrib>Tsakam, B.</creatorcontrib><creatorcontrib>Junqua, J.-C.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rigazio, L.</au><au>Tsakam, B.</au><au>Junqua, J.-C.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>An optimal Bhattacharyya centroid algorithm for Gaussian clustering with applications in automatic speech recognition</atitle><btitle>2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100)</btitle><stitle>ICASSP</stitle><date>2000</date><risdate>2000</risdate><volume>3</volume><spage>1599</spage><epage>1602 vol.3</epage><pages>1599-1602 vol.3</pages><issn>1520-6149</issn><eissn>2379-190X</eissn><isbn>9780780362932</isbn><isbn>0780362934</isbn><abstract>The problem of clustering Gaussian distributions can be effectively solved by standard vector quantization algorithms where the metric is defined by the Bhattacharyya distance. This paper presents a novel algorithm for computing the optimal centroid for a cluster of Gaussian distributions according to the Bhattacharyya metric. We show that this centroid maximizes an upper bound on the probability of representing the population modeled by the distributions associated with the cluster. The proposed method is evaluated in clustering distributions of hidden Markov model speech recognizers to reduce the overall memory consumption and runtime complexity of the decoding. Experimental results show that, depending on the task, the number of distributions can be reduced by a factor of 2 to 6 with an increase in recognition accuracy. When compared to a maximum likelihood centroid, the Bhattacharyya centroid provides a 13% error rate reduction in a 2k word recognition task.</abstract><pub>IEEE</pub><doi>10.1109/ICASSP.2000.861998</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1520-6149
ispartof 2000 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.00CH37100), 2000, Vol.3, p.1599-1602 vol.3
issn 1520-6149
2379-190X
language eng
recordid cdi_ieee_primary_861998
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Clustering algorithms
Distributed computing
Gaussian distribution
Hidden Markov models
Maximum likelihood decoding
Runtime
Speech analysis
Speech recognition
Upper bound
Vector quantization
title An optimal Bhattacharyya centroid algorithm for Gaussian clustering with applications in automatic speech recognition
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=An%20optimal%20Bhattacharyya%20centroid%20algorithm%20for%20Gaussian%20clustering%20with%20applications%20in%20automatic%20speech%20recognition&rft.btitle=2000%20IEEE%20International%20Conference%20on%20Acoustics,%20Speech,%20and%20Signal%20Processing.%20Proceedings%20(Cat.%20No.00CH37100)&rft.au=Rigazio,%20L.&rft.date=2000&rft.volume=3&rft.spage=1599&rft.epage=1602%20vol.3&rft.pages=1599-1602%20vol.3&rft.issn=1520-6149&rft.eissn=2379-190X&rft.isbn=9780780362932&rft.isbn_list=0780362934&rft_id=info:doi/10.1109/ICASSP.2000.861998&rft_dat=%3Cieee_6IE%3E861998%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=861998&rfr_iscdi=true