Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays

In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.12598-12609
Hauptverfasser: Sun, Yanchao, Dong, Dingran, Qin, Hongde, Wang, Ning, Li, Xiaojia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12609
container_issue
container_start_page 12598
container_title IEEE access
container_volume 7
creator Sun, Yanchao
Dong, Dingran
Qin, Hongde
Wang, Ning
Li, Xiaojia
description In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velocity case and time-varying leader velocity case are addressed by designing two different distributed observers. Combining with the proposed distributed leader velocity observers, two coordinated tracking control schemes are developed by the effort of neural network approximation and sliding mode technique, which can compensate the nonlinearities and uncertainties. For the first case, tracking errors are rigorously proved to be globally asymptotically converged by using Lyapunov-Krasovskii method. To further eliminate chattering caused by the discontinuous sign function, the saturation function is used for the second case, and the proposed control algorithm ensures the same convergence of tracking errors via Lyapunov analysis. Finally, the effectiveness of the proposed distributed tracking control schemes is verified by the numerical examples.
doi_str_mv 10.1109/ACCESS.2019.2893261
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8618438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8618438</ieee_id><doaj_id>oai_doaj_org_article_78a2c57d8c6649f1b8fa65a6e5a5f3ed</doaj_id><sourcerecordid>2455643709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3231-48135d33cba99c30f51f314da4172eb1d53c3d79878ebcedfe9c6c4464ecabb63</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIIWSJDkC3IR0LNcUXyIPAaK2wRw0YOd9kisyJVLVxJdkjr4kH-PXAVB9rKLwczsAJNld6RcEVKqr_dNs95uV1VJ1KqSilaCXGRXFRGqoJyKTx_uy-w2xkM5j5whXl9lLw8upuDaKaHNG--DdSOc710A89eN-xkcU_B93vmQ_5j65I495s-jwZDAjfl66jEUG9gHGPeYb08x4RDz3y79yXduwOIXhNPiMwzT6Awk58f8AXs4xZvscwd9xNu3fZ09f1vvmsdi8_P7U3O_KQytKCmYJJRbSk0LShladpx0lDALjNQVtsRyaqitlawltgZth8oIw5hgaKBtBb3OnhZf6-Ggj8ENcyjtwen_gA97DSE506OuJVSG11YaIZjqSCs7EBwEcuAdRTt7fVm8jsH_mzAmffBTGOf4umKcC0brUs0surBM8DEG7N6_klKfa9NLbfpcm36rbVbdLSqHiO8KKYhkVNJXnVaWHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455643709</pqid></control><display><type>article</type><title>Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Yanchao ; Dong, Dingran ; Qin, Hongde ; Wang, Ning ; Li, Xiaojia</creator><creatorcontrib>Sun, Yanchao ; Dong, Dingran ; Qin, Hongde ; Wang, Ning ; Li, Xiaojia</creatorcontrib><description>In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velocity case and time-varying leader velocity case are addressed by designing two different distributed observers. Combining with the proposed distributed leader velocity observers, two coordinated tracking control schemes are developed by the effort of neural network approximation and sliding mode technique, which can compensate the nonlinearities and uncertainties. For the first case, tracking errors are rigorously proved to be globally asymptotically converged by using Lyapunov-Krasovskii method. To further eliminate chattering caused by the discontinuous sign function, the saturation function is used for the second case, and the proposed control algorithm ensures the same convergence of tracking errors via Lyapunov analysis. Finally, the effectiveness of the proposed distributed tracking control schemes is verified by the numerical examples.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2893261</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Control algorithms ; Control theory ; Convergence ; Decentralized control ; Delays ; distributed tracking control ; Euler-Lagrange systems ; Mathematical analysis ; Multi-agent systems ; neural network ; Neural networks ; Observers ; Sliding mode control ; time-varying communication delay ; Time-varying systems ; Topology ; Tracking control ; Tracking errors ; Uncertainty</subject><ispartof>IEEE access, 2019, Vol.7, p.12598-12609</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3231-48135d33cba99c30f51f314da4172eb1d53c3d79878ebcedfe9c6c4464ecabb63</citedby><cites>FETCH-LOGICAL-c3231-48135d33cba99c30f51f314da4172eb1d53c3d79878ebcedfe9c6c4464ecabb63</cites><orcidid>0000-0001-7392-4472 ; 0000-0003-1745-1425 ; 0000-0002-9794-4491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8618438$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Sun, Yanchao</creatorcontrib><creatorcontrib>Dong, Dingran</creatorcontrib><creatorcontrib>Qin, Hongde</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Li, Xiaojia</creatorcontrib><title>Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velocity case and time-varying leader velocity case are addressed by designing two different distributed observers. Combining with the proposed distributed leader velocity observers, two coordinated tracking control schemes are developed by the effort of neural network approximation and sliding mode technique, which can compensate the nonlinearities and uncertainties. For the first case, tracking errors are rigorously proved to be globally asymptotically converged by using Lyapunov-Krasovskii method. To further eliminate chattering caused by the discontinuous sign function, the saturation function is used for the second case, and the proposed control algorithm ensures the same convergence of tracking errors via Lyapunov analysis. Finally, the effectiveness of the proposed distributed tracking control schemes is verified by the numerical examples.</description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Decentralized control</subject><subject>Delays</subject><subject>distributed tracking control</subject><subject>Euler-Lagrange systems</subject><subject>Mathematical analysis</subject><subject>Multi-agent systems</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Observers</subject><subject>Sliding mode control</subject><subject>time-varying communication delay</subject><subject>Time-varying systems</subject><subject>Topology</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIIWSJDkC3IR0LNcUXyIPAaK2wRw0YOd9kisyJVLVxJdkjr4kH-PXAVB9rKLwczsAJNld6RcEVKqr_dNs95uV1VJ1KqSilaCXGRXFRGqoJyKTx_uy-w2xkM5j5whXl9lLw8upuDaKaHNG--DdSOc710A89eN-xkcU_B93vmQ_5j65I495s-jwZDAjfl66jEUG9gHGPeYb08x4RDz3y79yXduwOIXhNPiMwzT6Awk58f8AXs4xZvscwd9xNu3fZ09f1vvmsdi8_P7U3O_KQytKCmYJJRbSk0LShladpx0lDALjNQVtsRyaqitlawltgZth8oIw5hgaKBtBb3OnhZf6-Ggj8ENcyjtwen_gA97DSE506OuJVSG11YaIZjqSCs7EBwEcuAdRTt7fVm8jsH_mzAmffBTGOf4umKcC0brUs0surBM8DEG7N6_klKfa9NLbfpcm36rbVbdLSqHiO8KKYhkVNJXnVaWHg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Sun, Yanchao</creator><creator>Dong, Dingran</creator><creator>Qin, Hongde</creator><creator>Wang, Ning</creator><creator>Li, Xiaojia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7392-4472</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid><orcidid>https://orcid.org/0000-0002-9794-4491</orcidid></search><sort><creationdate>2019</creationdate><title>Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays</title><author>Sun, Yanchao ; Dong, Dingran ; Qin, Hongde ; Wang, Ning ; Li, Xiaojia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3231-48135d33cba99c30f51f314da4172eb1d53c3d79878ebcedfe9c6c4464ecabb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Decentralized control</topic><topic>Delays</topic><topic>distributed tracking control</topic><topic>Euler-Lagrange systems</topic><topic>Mathematical analysis</topic><topic>Multi-agent systems</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Observers</topic><topic>Sliding mode control</topic><topic>time-varying communication delay</topic><topic>Time-varying systems</topic><topic>Topology</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yanchao</creatorcontrib><creatorcontrib>Dong, Dingran</creatorcontrib><creatorcontrib>Qin, Hongde</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Li, Xiaojia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yanchao</au><au>Dong, Dingran</au><au>Qin, Hongde</au><au>Wang, Ning</au><au>Li, Xiaojia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>12598</spage><epage>12609</epage><pages>12598-12609</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velocity case and time-varying leader velocity case are addressed by designing two different distributed observers. Combining with the proposed distributed leader velocity observers, two coordinated tracking control schemes are developed by the effort of neural network approximation and sliding mode technique, which can compensate the nonlinearities and uncertainties. For the first case, tracking errors are rigorously proved to be globally asymptotically converged by using Lyapunov-Krasovskii method. To further eliminate chattering caused by the discontinuous sign function, the saturation function is used for the second case, and the proposed control algorithm ensures the same convergence of tracking errors via Lyapunov analysis. Finally, the effectiveness of the proposed distributed tracking control schemes is verified by the numerical examples.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2893261</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7392-4472</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid><orcidid>https://orcid.org/0000-0002-9794-4491</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.12598-12609
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8618438
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Control algorithms
Control theory
Convergence
Decentralized control
Delays
distributed tracking control
Euler-Lagrange systems
Mathematical analysis
Multi-agent systems
neural network
Neural networks
Observers
Sliding mode control
time-varying communication delay
Time-varying systems
Topology
Tracking control
Tracking errors
Uncertainty
title Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Coordinated%20Tracking%20Control%20for%20Multiple%20Uncertain%20Euler-Lagrange%20Systems%20With%20Time-Varying%20Communication%20Delays&rft.jtitle=IEEE%20access&rft.au=Sun,%20Yanchao&rft.date=2019&rft.volume=7&rft.spage=12598&rft.epage=12609&rft.pages=12598-12609&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2893261&rft_dat=%3Cproquest_ieee_%3E2455643709%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455643709&rft_id=info:pmid/&rft_ieee_id=8618438&rft_doaj_id=oai_doaj_org_article_78a2c57d8c6649f1b8fa65a6e5a5f3ed&rfr_iscdi=true