Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays
In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velo...
Gespeichert in:
Veröffentlicht in: | IEEE access 2019, Vol.7, p.12598-12609 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 12609 |
---|---|
container_issue | |
container_start_page | 12598 |
container_title | IEEE access |
container_volume | 7 |
creator | Sun, Yanchao Dong, Dingran Qin, Hongde Wang, Ning Li, Xiaojia |
description | In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velocity case and time-varying leader velocity case are addressed by designing two different distributed observers. Combining with the proposed distributed leader velocity observers, two coordinated tracking control schemes are developed by the effort of neural network approximation and sliding mode technique, which can compensate the nonlinearities and uncertainties. For the first case, tracking errors are rigorously proved to be globally asymptotically converged by using Lyapunov-Krasovskii method. To further eliminate chattering caused by the discontinuous sign function, the saturation function is used for the second case, and the proposed control algorithm ensures the same convergence of tracking errors via Lyapunov analysis. Finally, the effectiveness of the proposed distributed tracking control schemes is verified by the numerical examples. |
doi_str_mv | 10.1109/ACCESS.2019.2893261 |
format | Article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8618438</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8618438</ieee_id><doaj_id>oai_doaj_org_article_78a2c57d8c6649f1b8fa65a6e5a5f3ed</doaj_id><sourcerecordid>2455643709</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3231-48135d33cba99c30f51f314da4172eb1d53c3d79878ebcedfe9c6c4464ecabb63</originalsourceid><addsrcrecordid>eNpNUctu2zAQFIIWSJDkC3IR0LNcUXyIPAaK2wRw0YOd9kisyJVLVxJdkjr4kH-PXAVB9rKLwczsAJNld6RcEVKqr_dNs95uV1VJ1KqSilaCXGRXFRGqoJyKTx_uy-w2xkM5j5whXl9lLw8upuDaKaHNG--DdSOc710A89eN-xkcU_B93vmQ_5j65I495s-jwZDAjfl66jEUG9gHGPeYb08x4RDz3y79yXduwOIXhNPiMwzT6Awk58f8AXs4xZvscwd9xNu3fZ09f1vvmsdi8_P7U3O_KQytKCmYJJRbSk0LShladpx0lDALjNQVtsRyaqitlawltgZth8oIw5hgaKBtBb3OnhZf6-Ggj8ENcyjtwen_gA97DSE506OuJVSG11YaIZjqSCs7EBwEcuAdRTt7fVm8jsH_mzAmffBTGOf4umKcC0brUs0surBM8DEG7N6_klKfa9NLbfpcm36rbVbdLSqHiO8KKYhkVNJXnVaWHg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455643709</pqid></control><display><type>article</type><title>Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Sun, Yanchao ; Dong, Dingran ; Qin, Hongde ; Wang, Ning ; Li, Xiaojia</creator><creatorcontrib>Sun, Yanchao ; Dong, Dingran ; Qin, Hongde ; Wang, Ning ; Li, Xiaojia</creatorcontrib><description>In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velocity case and time-varying leader velocity case are addressed by designing two different distributed observers. Combining with the proposed distributed leader velocity observers, two coordinated tracking control schemes are developed by the effort of neural network approximation and sliding mode technique, which can compensate the nonlinearities and uncertainties. For the first case, tracking errors are rigorously proved to be globally asymptotically converged by using Lyapunov-Krasovskii method. To further eliminate chattering caused by the discontinuous sign function, the saturation function is used for the second case, and the proposed control algorithm ensures the same convergence of tracking errors via Lyapunov analysis. Finally, the effectiveness of the proposed distributed tracking control schemes is verified by the numerical examples.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2893261</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Control algorithms ; Control theory ; Convergence ; Decentralized control ; Delays ; distributed tracking control ; Euler-Lagrange systems ; Mathematical analysis ; Multi-agent systems ; neural network ; Neural networks ; Observers ; Sliding mode control ; time-varying communication delay ; Time-varying systems ; Topology ; Tracking control ; Tracking errors ; Uncertainty</subject><ispartof>IEEE access, 2019, Vol.7, p.12598-12609</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3231-48135d33cba99c30f51f314da4172eb1d53c3d79878ebcedfe9c6c4464ecabb63</citedby><cites>FETCH-LOGICAL-c3231-48135d33cba99c30f51f314da4172eb1d53c3d79878ebcedfe9c6c4464ecabb63</cites><orcidid>0000-0001-7392-4472 ; 0000-0003-1745-1425 ; 0000-0002-9794-4491</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8618438$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Sun, Yanchao</creatorcontrib><creatorcontrib>Dong, Dingran</creatorcontrib><creatorcontrib>Qin, Hongde</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Li, Xiaojia</creatorcontrib><title>Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velocity case and time-varying leader velocity case are addressed by designing two different distributed observers. Combining with the proposed distributed leader velocity observers, two coordinated tracking control schemes are developed by the effort of neural network approximation and sliding mode technique, which can compensate the nonlinearities and uncertainties. For the first case, tracking errors are rigorously proved to be globally asymptotically converged by using Lyapunov-Krasovskii method. To further eliminate chattering caused by the discontinuous sign function, the saturation function is used for the second case, and the proposed control algorithm ensures the same convergence of tracking errors via Lyapunov analysis. Finally, the effectiveness of the proposed distributed tracking control schemes is verified by the numerical examples.</description><subject>Algorithms</subject><subject>Control algorithms</subject><subject>Control theory</subject><subject>Convergence</subject><subject>Decentralized control</subject><subject>Delays</subject><subject>distributed tracking control</subject><subject>Euler-Lagrange systems</subject><subject>Mathematical analysis</subject><subject>Multi-agent systems</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Observers</subject><subject>Sliding mode control</subject><subject>time-varying communication delay</subject><subject>Time-varying systems</subject><subject>Topology</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctu2zAQFIIWSJDkC3IR0LNcUXyIPAaK2wRw0YOd9kisyJVLVxJdkjr4kH-PXAVB9rKLwczsAJNld6RcEVKqr_dNs95uV1VJ1KqSilaCXGRXFRGqoJyKTx_uy-w2xkM5j5whXl9lLw8upuDaKaHNG--DdSOc710A89eN-xkcU_B93vmQ_5j65I495s-jwZDAjfl66jEUG9gHGPeYb08x4RDz3y79yXduwOIXhNPiMwzT6Awk58f8AXs4xZvscwd9xNu3fZ09f1vvmsdi8_P7U3O_KQytKCmYJJRbSk0LShladpx0lDALjNQVtsRyaqitlawltgZth8oIw5hgaKBtBb3OnhZf6-Ggj8ENcyjtwen_gA97DSE506OuJVSG11YaIZjqSCs7EBwEcuAdRTt7fVm8jsH_mzAmffBTGOf4umKcC0brUs0surBM8DEG7N6_klKfa9NLbfpcm36rbVbdLSqHiO8KKYhkVNJXnVaWHg</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Sun, Yanchao</creator><creator>Dong, Dingran</creator><creator>Qin, Hongde</creator><creator>Wang, Ning</creator><creator>Li, Xiaojia</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7392-4472</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid><orcidid>https://orcid.org/0000-0002-9794-4491</orcidid></search><sort><creationdate>2019</creationdate><title>Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays</title><author>Sun, Yanchao ; Dong, Dingran ; Qin, Hongde ; Wang, Ning ; Li, Xiaojia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3231-48135d33cba99c30f51f314da4172eb1d53c3d79878ebcedfe9c6c4464ecabb63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Control algorithms</topic><topic>Control theory</topic><topic>Convergence</topic><topic>Decentralized control</topic><topic>Delays</topic><topic>distributed tracking control</topic><topic>Euler-Lagrange systems</topic><topic>Mathematical analysis</topic><topic>Multi-agent systems</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Observers</topic><topic>Sliding mode control</topic><topic>time-varying communication delay</topic><topic>Time-varying systems</topic><topic>Topology</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Yanchao</creatorcontrib><creatorcontrib>Dong, Dingran</creatorcontrib><creatorcontrib>Qin, Hongde</creatorcontrib><creatorcontrib>Wang, Ning</creatorcontrib><creatorcontrib>Li, Xiaojia</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Yanchao</au><au>Dong, Dingran</au><au>Qin, Hongde</au><au>Wang, Ning</au><au>Li, Xiaojia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>12598</spage><epage>12609</epage><pages>12598-12609</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, under-directed topology, distributed coordinated tracking control schemes are proposed for multiple Euler-Lagrange systems with time-varying communication delays, nonlinear uncertainties, and external disturbances. Concerning with different leader velocities, both constant leader velocity case and time-varying leader velocity case are addressed by designing two different distributed observers. Combining with the proposed distributed leader velocity observers, two coordinated tracking control schemes are developed by the effort of neural network approximation and sliding mode technique, which can compensate the nonlinearities and uncertainties. For the first case, tracking errors are rigorously proved to be globally asymptotically converged by using Lyapunov-Krasovskii method. To further eliminate chattering caused by the discontinuous sign function, the saturation function is used for the second case, and the proposed control algorithm ensures the same convergence of tracking errors via Lyapunov analysis. Finally, the effectiveness of the proposed distributed tracking control schemes is verified by the numerical examples.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2893261</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-7392-4472</orcidid><orcidid>https://orcid.org/0000-0003-1745-1425</orcidid><orcidid>https://orcid.org/0000-0002-9794-4491</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2019, Vol.7, p.12598-12609 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_8618438 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Control algorithms Control theory Convergence Decentralized control Delays distributed tracking control Euler-Lagrange systems Mathematical analysis Multi-agent systems neural network Neural networks Observers Sliding mode control time-varying communication delay Time-varying systems Topology Tracking control Tracking errors Uncertainty |
title | Distributed Coordinated Tracking Control for Multiple Uncertain Euler-Lagrange Systems With Time-Varying Communication Delays |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T21%3A19%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Coordinated%20Tracking%20Control%20for%20Multiple%20Uncertain%20Euler-Lagrange%20Systems%20With%20Time-Varying%20Communication%20Delays&rft.jtitle=IEEE%20access&rft.au=Sun,%20Yanchao&rft.date=2019&rft.volume=7&rft.spage=12598&rft.epage=12609&rft.pages=12598-12609&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2893261&rft_dat=%3Cproquest_ieee_%3E2455643709%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455643709&rft_id=info:pmid/&rft_ieee_id=8618438&rft_doaj_id=oai_doaj_org_article_78a2c57d8c6649f1b8fa65a6e5a5f3ed&rfr_iscdi=true |