Brain Image Segmentation Based on FCM Clustering Algorithm and Rough Set

In this paper, a new image segmentation method is proposed by combining the FCM clustering algorithm with a rough set theory. First, the attribute value table is constructed based on the segmentation results of FCM under different clustering numbers, and the image is divided into several small regio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2019, Vol.7, p.12386-12396
Hauptverfasser: Huang, Hong, Meng, Fanzhi, Zhou, Shaohua, Jiang, Feng, Manogaran, Gunasekaran
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 12396
container_issue
container_start_page 12386
container_title IEEE access
container_volume 7
creator Huang, Hong
Meng, Fanzhi
Zhou, Shaohua
Jiang, Feng
Manogaran, Gunasekaran
description In this paper, a new image segmentation method is proposed by combining the FCM clustering algorithm with a rough set theory. First, the attribute value table is constructed based on the segmentation results of FCM under different clustering numbers, and the image is divided into several small regions based on the indistinguishable relationship of attributes. Then, the weight values of each attribute are obtained by value reduction and used as the basis to calculate the difference between regions and then the similarity evaluation of each region is realized through the equivalence relationship defined by the difference degree. Finally, the final equivalence relation defined by similarity is used to merge regions and complete image segmentation. This method is validated in the segmentation of artificially generated images, brain CT images, and MRI images. The experimental results show that compared with the FCM method, the proposed method can reduce the error rate and achieve better segmentation results for the fuzzy boundary region. And, the experimental results also prove that the algorithm has strong anti-noise ability.
doi_str_mv 10.1109/ACCESS.2019.2893063
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_8612906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8612906</ieee_id><doaj_id>oai_doaj_org_article_85678b78afbd41019e2ddcd3427bc024</doaj_id><sourcerecordid>2455604703</sourcerecordid><originalsourceid>FETCH-LOGICAL-c458t-778fdad897723b6acb7347ae70151fd5bb2cab25bb33d54732c1fe326de481da3</originalsourceid><addsrcrecordid>eNpNUU1rwzAMDWODla6_oJfAzun8GTvHNrRroWOwbmfj2E6aksSd4xz27-cupUwXiSe9J6EXRXMIFhCC7GWZ5-vDYYEAzBaIZxik-C6aIJhmCaY4vf9XP0azvj-BEDxAlE2i7crJuot3raxMfDBVazovfW27eCV7o-NQbPK3OG-G3htXd1W8bCrran9sY9np-MMO1TEQ_VP0UMqmN7NrnkZfm_Vnvk3276-7fLlPFKHcJ4zxUkvNM8YQLlKpCoYJk4YBSGGpaVEgJQsUMsaaEoaRgqXBKNWGcKglnka7UVdbeRJnV7fS_Qgra_EHWFcJ6XytGiM4TRkvGJdloQkM7zFIa6UxQaxQAJGg9TxqnZ39HkzvxckOrgvnC0QoTQFhAIcpPE4pZ_vemfK2FQJxcUCMDoiLA-LqQGDNR1ZtjLkxeApRFtq_e2SAPA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2455604703</pqid></control><display><type>article</type><title>Brain Image Segmentation Based on FCM Clustering Algorithm and Rough Set</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Huang, Hong ; Meng, Fanzhi ; Zhou, Shaohua ; Jiang, Feng ; Manogaran, Gunasekaran</creator><creatorcontrib>Huang, Hong ; Meng, Fanzhi ; Zhou, Shaohua ; Jiang, Feng ; Manogaran, Gunasekaran</creatorcontrib><description>In this paper, a new image segmentation method is proposed by combining the FCM clustering algorithm with a rough set theory. First, the attribute value table is constructed based on the segmentation results of FCM under different clustering numbers, and the image is divided into several small regions based on the indistinguishable relationship of attributes. Then, the weight values of each attribute are obtained by value reduction and used as the basis to calculate the difference between regions and then the similarity evaluation of each region is realized through the equivalence relationship defined by the difference degree. Finally, the final equivalence relation defined by similarity is used to merge regions and complete image segmentation. This method is validated in the segmentation of artificially generated images, brain CT images, and MRI images. The experimental results show that compared with the FCM method, the proposed method can reduce the error rate and achieve better segmentation results for the fuzzy boundary region. And, the experimental results also prove that the algorithm has strong anti-noise ability.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2019.2893063</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Brain ; Brain image segmentation ; Classification algorithms ; Clustering ; Clustering algorithms ; Clustering methods ; Computed tomography ; Equivalence ; Error reduction ; FCM clustering ; Image segmentation ; Kernel ; Magnetic resonance imaging ; Medical imaging ; rough set ; Rough sets ; Set theory ; Similarity ; system</subject><ispartof>IEEE access, 2019, Vol.7, p.12386-12396</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c458t-778fdad897723b6acb7347ae70151fd5bb2cab25bb33d54732c1fe326de481da3</citedby><cites>FETCH-LOGICAL-c458t-778fdad897723b6acb7347ae70151fd5bb2cab25bb33d54732c1fe326de481da3</cites><orcidid>0000-0002-0973-7231 ; 0000-0001-8342-1211 ; 0000-0003-4083-6163</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8612906$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Huang, Hong</creatorcontrib><creatorcontrib>Meng, Fanzhi</creatorcontrib><creatorcontrib>Zhou, Shaohua</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Manogaran, Gunasekaran</creatorcontrib><title>Brain Image Segmentation Based on FCM Clustering Algorithm and Rough Set</title><title>IEEE access</title><addtitle>Access</addtitle><description>In this paper, a new image segmentation method is proposed by combining the FCM clustering algorithm with a rough set theory. First, the attribute value table is constructed based on the segmentation results of FCM under different clustering numbers, and the image is divided into several small regions based on the indistinguishable relationship of attributes. Then, the weight values of each attribute are obtained by value reduction and used as the basis to calculate the difference between regions and then the similarity evaluation of each region is realized through the equivalence relationship defined by the difference degree. Finally, the final equivalence relation defined by similarity is used to merge regions and complete image segmentation. This method is validated in the segmentation of artificially generated images, brain CT images, and MRI images. The experimental results show that compared with the FCM method, the proposed method can reduce the error rate and achieve better segmentation results for the fuzzy boundary region. And, the experimental results also prove that the algorithm has strong anti-noise ability.</description><subject>Algorithms</subject><subject>Brain</subject><subject>Brain image segmentation</subject><subject>Classification algorithms</subject><subject>Clustering</subject><subject>Clustering algorithms</subject><subject>Clustering methods</subject><subject>Computed tomography</subject><subject>Equivalence</subject><subject>Error reduction</subject><subject>FCM clustering</subject><subject>Image segmentation</subject><subject>Kernel</subject><subject>Magnetic resonance imaging</subject><subject>Medical imaging</subject><subject>rough set</subject><subject>Rough sets</subject><subject>Set theory</subject><subject>Similarity</subject><subject>system</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1rwzAMDWODla6_oJfAzun8GTvHNrRroWOwbmfj2E6aksSd4xz27-cupUwXiSe9J6EXRXMIFhCC7GWZ5-vDYYEAzBaIZxik-C6aIJhmCaY4vf9XP0azvj-BEDxAlE2i7crJuot3raxMfDBVazovfW27eCV7o-NQbPK3OG-G3htXd1W8bCrran9sY9np-MMO1TEQ_VP0UMqmN7NrnkZfm_Vnvk3276-7fLlPFKHcJ4zxUkvNM8YQLlKpCoYJk4YBSGGpaVEgJQsUMsaaEoaRgqXBKNWGcKglnka7UVdbeRJnV7fS_Qgra_EHWFcJ6XytGiM4TRkvGJdloQkM7zFIa6UxQaxQAJGg9TxqnZ39HkzvxckOrgvnC0QoTQFhAIcpPE4pZ_vemfK2FQJxcUCMDoiLA-LqQGDNR1ZtjLkxeApRFtq_e2SAPA</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Huang, Hong</creator><creator>Meng, Fanzhi</creator><creator>Zhou, Shaohua</creator><creator>Jiang, Feng</creator><creator>Manogaran, Gunasekaran</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0973-7231</orcidid><orcidid>https://orcid.org/0000-0001-8342-1211</orcidid><orcidid>https://orcid.org/0000-0003-4083-6163</orcidid></search><sort><creationdate>2019</creationdate><title>Brain Image Segmentation Based on FCM Clustering Algorithm and Rough Set</title><author>Huang, Hong ; Meng, Fanzhi ; Zhou, Shaohua ; Jiang, Feng ; Manogaran, Gunasekaran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c458t-778fdad897723b6acb7347ae70151fd5bb2cab25bb33d54732c1fe326de481da3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Algorithms</topic><topic>Brain</topic><topic>Brain image segmentation</topic><topic>Classification algorithms</topic><topic>Clustering</topic><topic>Clustering algorithms</topic><topic>Clustering methods</topic><topic>Computed tomography</topic><topic>Equivalence</topic><topic>Error reduction</topic><topic>FCM clustering</topic><topic>Image segmentation</topic><topic>Kernel</topic><topic>Magnetic resonance imaging</topic><topic>Medical imaging</topic><topic>rough set</topic><topic>Rough sets</topic><topic>Set theory</topic><topic>Similarity</topic><topic>system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hong</creatorcontrib><creatorcontrib>Meng, Fanzhi</creatorcontrib><creatorcontrib>Zhou, Shaohua</creatorcontrib><creatorcontrib>Jiang, Feng</creatorcontrib><creatorcontrib>Manogaran, Gunasekaran</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Hong</au><au>Meng, Fanzhi</au><au>Zhou, Shaohua</au><au>Jiang, Feng</au><au>Manogaran, Gunasekaran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain Image Segmentation Based on FCM Clustering Algorithm and Rough Set</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2019</date><risdate>2019</risdate><volume>7</volume><spage>12386</spage><epage>12396</epage><pages>12386-12396</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In this paper, a new image segmentation method is proposed by combining the FCM clustering algorithm with a rough set theory. First, the attribute value table is constructed based on the segmentation results of FCM under different clustering numbers, and the image is divided into several small regions based on the indistinguishable relationship of attributes. Then, the weight values of each attribute are obtained by value reduction and used as the basis to calculate the difference between regions and then the similarity evaluation of each region is realized through the equivalence relationship defined by the difference degree. Finally, the final equivalence relation defined by similarity is used to merge regions and complete image segmentation. This method is validated in the segmentation of artificially generated images, brain CT images, and MRI images. The experimental results show that compared with the FCM method, the proposed method can reduce the error rate and achieve better segmentation results for the fuzzy boundary region. And, the experimental results also prove that the algorithm has strong anti-noise ability.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2019.2893063</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-0973-7231</orcidid><orcidid>https://orcid.org/0000-0001-8342-1211</orcidid><orcidid>https://orcid.org/0000-0003-4083-6163</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2019, Vol.7, p.12386-12396
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_8612906
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Brain
Brain image segmentation
Classification algorithms
Clustering
Clustering algorithms
Clustering methods
Computed tomography
Equivalence
Error reduction
FCM clustering
Image segmentation
Kernel
Magnetic resonance imaging
Medical imaging
rough set
Rough sets
Set theory
Similarity
system
title Brain Image Segmentation Based on FCM Clustering Algorithm and Rough Set
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T06%3A48%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20Image%20Segmentation%20Based%20on%20FCM%20Clustering%20Algorithm%20and%20Rough%20Set&rft.jtitle=IEEE%20access&rft.au=Huang,%20Hong&rft.date=2019&rft.volume=7&rft.spage=12386&rft.epage=12396&rft.pages=12386-12396&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2019.2893063&rft_dat=%3Cproquest_ieee_%3E2455604703%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2455604703&rft_id=info:pmid/&rft_ieee_id=8612906&rft_doaj_id=oai_doaj_org_article_85678b78afbd41019e2ddcd3427bc024&rfr_iscdi=true