Efficient Concurrent Search Trees Using Portable Fine-Grained Locality

Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data localit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on parallel and distributed systems 2019-07, Vol.30 (7), p.1580-1595
Hauptverfasser: Ha, Phuong Hoai, Anshus, Otto J., Umar, Ibrahim
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1595
container_issue 7
container_start_page 1580
container_title IEEE transactions on parallel and distributed systems
container_volume 30
creator Ha, Phuong Hoai
Anshus, Otto J.
Umar, Ibrahim
description Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in operations/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC) platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Synchrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms. GreenBST achieves up to 50 percent more energy efficiency and 60 percent higher throughput than the best competitor in the parallel benchmarks. These results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees.
doi_str_mv 10.1109/TPDS.2019.2892968
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8611364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8611364</ieee_id><sourcerecordid>2243276090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-8cf04ecb70fe47b7f5b9ac44f5013c51d183c09db6a450ff9a9cc7a60208adc73</originalsourceid><addsrcrecordid>eNo9kEFPAjEUhDdGExH9AcaDm3hefK_tbtujQUATEkmAc9PttlqCu9guB_69JaCnmcPMZPJl2T3CCBHk82rxuhwRQDkiQhJZiYtsgGUpCoKCXiYPrCwkQXmd3cS4AUBWAhtk04lz3njb9vm4a80-hKNdWh3MV74K1sZ8HX37mS-60Ot6a_Opb20xCzpJk887o7e-P9xmV05vo7076zBbTyer8Vsx_5i9j1_mhaFI-kIYB8yamoOzjNfclbXUhjFXAlJTYpPOGpBNXel0zzmppTFcV0BA6MZwOsweT7sm-Nj7VrVd0AoBKFfIBceUeDoldqH72dvYq023D206pQhhlPAKJKQU_u10MQbr1C74bx0OaUsdgaojUHUEqs5AU-fh1PHW2v-8qBBpxegvlBNv8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243276090</pqid></control><display><type>article</type><title>Efficient Concurrent Search Trees Using Portable Fine-Grained Locality</title><source>IEEE Electronic Library (IEL)</source><creator>Ha, Phuong Hoai ; Anshus, Otto J. ; Umar, Ibrahim</creator><creatorcontrib>Ha, Phuong Hoai ; Anshus, Otto J. ; Umar, Ibrahim</creatorcontrib><description>Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in operations/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC) platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Synchrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms. GreenBST achieves up to 50 percent more energy efficiency and 60 percent higher throughput than the best competitor in the parallel benchmarks. These results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2892968</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmarks ; Computation ; Concurrency ; Concurrent computing ; Concurrent data abstractions ; data locality ; Data models ; Data storage ; Data structures ; Energy efficiency ; Energy storage ; Informasjons- og kommunikasjonsvitenskap: 420 ; Information and communication science: 420 ; Layout ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Methodology ; performance optimization ; Portability ; Power efficiency ; Random access memory ; Searching ; System-on-chip ; Trees ; Upper bound ; VDP ; Viability</subject><ispartof>IEEE transactions on parallel and distributed systems, 2019-07, Vol.30 (7), p.1580-1595</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-8cf04ecb70fe47b7f5b9ac44f5013c51d183c09db6a450ff9a9cc7a60208adc73</cites><orcidid>0000-0003-3579-6566 ; 0000-0003-4281-5673 ; 0000-0001-8366-5590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8611364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,26544,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8611364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ha, Phuong Hoai</creatorcontrib><creatorcontrib>Anshus, Otto J.</creatorcontrib><creatorcontrib>Umar, Ibrahim</creatorcontrib><title>Efficient Concurrent Search Trees Using Portable Fine-Grained Locality</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in operations/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC) platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Synchrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms. GreenBST achieves up to 50 percent more energy efficiency and 60 percent higher throughput than the best competitor in the parallel benchmarks. These results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees.</description><subject>Benchmarks</subject><subject>Computation</subject><subject>Concurrency</subject><subject>Concurrent computing</subject><subject>Concurrent data abstractions</subject><subject>data locality</subject><subject>Data models</subject><subject>Data storage</subject><subject>Data structures</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Informasjons- og kommunikasjonsvitenskap: 420</subject><subject>Information and communication science: 420</subject><subject>Layout</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Methodology</subject><subject>performance optimization</subject><subject>Portability</subject><subject>Power efficiency</subject><subject>Random access memory</subject><subject>Searching</subject><subject>System-on-chip</subject><subject>Trees</subject><subject>Upper bound</subject><subject>VDP</subject><subject>Viability</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>3HK</sourceid><recordid>eNo9kEFPAjEUhDdGExH9AcaDm3hefK_tbtujQUATEkmAc9PttlqCu9guB_69JaCnmcPMZPJl2T3CCBHk82rxuhwRQDkiQhJZiYtsgGUpCoKCXiYPrCwkQXmd3cS4AUBWAhtk04lz3njb9vm4a80-hKNdWh3MV74K1sZ8HX37mS-60Ot6a_Opb20xCzpJk887o7e-P9xmV05vo7076zBbTyer8Vsx_5i9j1_mhaFI-kIYB8yamoOzjNfclbXUhjFXAlJTYpPOGpBNXel0zzmppTFcV0BA6MZwOsweT7sm-Nj7VrVd0AoBKFfIBceUeDoldqH72dvYq023D206pQhhlPAKJKQU_u10MQbr1C74bx0OaUsdgaojUHUEqs5AU-fh1PHW2v-8qBBpxegvlBNv8g</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Ha, Phuong Hoai</creator><creator>Anshus, Otto J.</creator><creator>Umar, Ibrahim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-3579-6566</orcidid><orcidid>https://orcid.org/0000-0003-4281-5673</orcidid><orcidid>https://orcid.org/0000-0001-8366-5590</orcidid></search><sort><creationdate>20190701</creationdate><title>Efficient Concurrent Search Trees Using Portable Fine-Grained Locality</title><author>Ha, Phuong Hoai ; Anshus, Otto J. ; Umar, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-8cf04ecb70fe47b7f5b9ac44f5013c51d183c09db6a450ff9a9cc7a60208adc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benchmarks</topic><topic>Computation</topic><topic>Concurrency</topic><topic>Concurrent computing</topic><topic>Concurrent data abstractions</topic><topic>data locality</topic><topic>Data models</topic><topic>Data storage</topic><topic>Data structures</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Informasjons- og kommunikasjonsvitenskap: 420</topic><topic>Information and communication science: 420</topic><topic>Layout</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Methodology</topic><topic>performance optimization</topic><topic>Portability</topic><topic>Power efficiency</topic><topic>Random access memory</topic><topic>Searching</topic><topic>System-on-chip</topic><topic>Trees</topic><topic>Upper bound</topic><topic>VDP</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Phuong Hoai</creatorcontrib><creatorcontrib>Anshus, Otto J.</creatorcontrib><creatorcontrib>Umar, Ibrahim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ha, Phuong Hoai</au><au>Anshus, Otto J.</au><au>Umar, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Concurrent Search Trees Using Portable Fine-Grained Locality</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>30</volume><issue>7</issue><spage>1580</spage><epage>1595</epage><pages>1580-1595</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in operations/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC) platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Synchrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms. GreenBST achieves up to 50 percent more energy efficiency and 60 percent higher throughput than the best competitor in the parallel benchmarks. These results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2892968</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3579-6566</orcidid><orcidid>https://orcid.org/0000-0003-4281-5673</orcidid><orcidid>https://orcid.org/0000-0001-8366-5590</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1045-9219
ispartof IEEE transactions on parallel and distributed systems, 2019-07, Vol.30 (7), p.1580-1595
issn 1045-9219
1558-2183
language eng
recordid cdi_ieee_primary_8611364
source IEEE Electronic Library (IEL)
subjects Benchmarks
Computation
Concurrency
Concurrent computing
Concurrent data abstractions
data locality
Data models
Data storage
Data structures
Energy efficiency
Energy storage
Informasjons- og kommunikasjonsvitenskap: 420
Information and communication science: 420
Layout
Matematikk og Naturvitenskap: 400
Mathematics and natural science: 400
Methodology
performance optimization
Portability
Power efficiency
Random access memory
Searching
System-on-chip
Trees
Upper bound
VDP
Viability
title Efficient Concurrent Search Trees Using Portable Fine-Grained Locality
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Concurrent%20Search%20Trees%20Using%20Portable%20Fine-Grained%20Locality&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Ha,%20Phuong%20Hoai&rft.date=2019-07-01&rft.volume=30&rft.issue=7&rft.spage=1580&rft.epage=1595&rft.pages=1580-1595&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2892968&rft_dat=%3Cproquest_RIE%3E2243276090%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243276090&rft_id=info:pmid/&rft_ieee_id=8611364&rfr_iscdi=true