Efficient Concurrent Search Trees Using Portable Fine-Grained Locality
Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data localit...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on parallel and distributed systems 2019-07, Vol.30 (7), p.1580-1595 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1595 |
---|---|
container_issue | 7 |
container_start_page | 1580 |
container_title | IEEE transactions on parallel and distributed systems |
container_volume | 30 |
creator | Ha, Phuong Hoai Anshus, Otto J. Umar, Ibrahim |
description | Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in operations/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC) platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Synchrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms. GreenBST achieves up to 50 percent more energy efficiency and 60 percent higher throughput than the best competitor in the parallel benchmarks. These results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees. |
doi_str_mv | 10.1109/TPDS.2019.2892968 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_8611364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>8611364</ieee_id><sourcerecordid>2243276090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c312t-8cf04ecb70fe47b7f5b9ac44f5013c51d183c09db6a450ff9a9cc7a60208adc73</originalsourceid><addsrcrecordid>eNo9kEFPAjEUhDdGExH9AcaDm3hefK_tbtujQUATEkmAc9PttlqCu9guB_69JaCnmcPMZPJl2T3CCBHk82rxuhwRQDkiQhJZiYtsgGUpCoKCXiYPrCwkQXmd3cS4AUBWAhtk04lz3njb9vm4a80-hKNdWh3MV74K1sZ8HX37mS-60Ot6a_Opb20xCzpJk887o7e-P9xmV05vo7076zBbTyer8Vsx_5i9j1_mhaFI-kIYB8yamoOzjNfclbXUhjFXAlJTYpPOGpBNXel0zzmppTFcV0BA6MZwOsweT7sm-Nj7VrVd0AoBKFfIBceUeDoldqH72dvYq023D206pQhhlPAKJKQU_u10MQbr1C74bx0OaUsdgaojUHUEqs5AU-fh1PHW2v-8qBBpxegvlBNv8g</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2243276090</pqid></control><display><type>article</type><title>Efficient Concurrent Search Trees Using Portable Fine-Grained Locality</title><source>IEEE Electronic Library (IEL)</source><creator>Ha, Phuong Hoai ; Anshus, Otto J. ; Umar, Ibrahim</creator><creatorcontrib>Ha, Phuong Hoai ; Anshus, Otto J. ; Umar, Ibrahim</creatorcontrib><description>Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in operations/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC) platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Synchrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms. GreenBST achieves up to 50 percent more energy efficiency and 60 percent higher throughput than the best competitor in the parallel benchmarks. These results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees.</description><identifier>ISSN: 1045-9219</identifier><identifier>EISSN: 1558-2183</identifier><identifier>DOI: 10.1109/TPDS.2019.2892968</identifier><identifier>CODEN: ITDSEO</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Benchmarks ; Computation ; Concurrency ; Concurrent computing ; Concurrent data abstractions ; data locality ; Data models ; Data storage ; Data structures ; Energy efficiency ; Energy storage ; Informasjons- og kommunikasjonsvitenskap: 420 ; Information and communication science: 420 ; Layout ; Matematikk og Naturvitenskap: 400 ; Mathematics and natural science: 400 ; Methodology ; performance optimization ; Portability ; Power efficiency ; Random access memory ; Searching ; System-on-chip ; Trees ; Upper bound ; VDP ; Viability</subject><ispartof>IEEE transactions on parallel and distributed systems, 2019-07, Vol.30 (7), p.1580-1595</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2019</rights><rights>info:eu-repo/semantics/openAccess</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c312t-8cf04ecb70fe47b7f5b9ac44f5013c51d183c09db6a450ff9a9cc7a60208adc73</cites><orcidid>0000-0003-3579-6566 ; 0000-0003-4281-5673 ; 0000-0001-8366-5590</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/8611364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,776,780,792,881,26544,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/8611364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ha, Phuong Hoai</creatorcontrib><creatorcontrib>Anshus, Otto J.</creatorcontrib><creatorcontrib>Umar, Ibrahim</creatorcontrib><title>Efficient Concurrent Search Trees Using Portable Fine-Grained Locality</title><title>IEEE transactions on parallel and distributed systems</title><addtitle>TPDS</addtitle><description>Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in operations/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC) platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Synchrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms. GreenBST achieves up to 50 percent more energy efficiency and 60 percent higher throughput than the best competitor in the parallel benchmarks. These results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees.</description><subject>Benchmarks</subject><subject>Computation</subject><subject>Concurrency</subject><subject>Concurrent computing</subject><subject>Concurrent data abstractions</subject><subject>data locality</subject><subject>Data models</subject><subject>Data storage</subject><subject>Data structures</subject><subject>Energy efficiency</subject><subject>Energy storage</subject><subject>Informasjons- og kommunikasjonsvitenskap: 420</subject><subject>Information and communication science: 420</subject><subject>Layout</subject><subject>Matematikk og Naturvitenskap: 400</subject><subject>Mathematics and natural science: 400</subject><subject>Methodology</subject><subject>performance optimization</subject><subject>Portability</subject><subject>Power efficiency</subject><subject>Random access memory</subject><subject>Searching</subject><subject>System-on-chip</subject><subject>Trees</subject><subject>Upper bound</subject><subject>VDP</subject><subject>Viability</subject><issn>1045-9219</issn><issn>1558-2183</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><sourceid>3HK</sourceid><recordid>eNo9kEFPAjEUhDdGExH9AcaDm3hefK_tbtujQUATEkmAc9PttlqCu9guB_69JaCnmcPMZPJl2T3CCBHk82rxuhwRQDkiQhJZiYtsgGUpCoKCXiYPrCwkQXmd3cS4AUBWAhtk04lz3njb9vm4a80-hKNdWh3MV74K1sZ8HX37mS-60Ot6a_Opb20xCzpJk887o7e-P9xmV05vo7076zBbTyer8Vsx_5i9j1_mhaFI-kIYB8yamoOzjNfclbXUhjFXAlJTYpPOGpBNXel0zzmppTFcV0BA6MZwOsweT7sm-Nj7VrVd0AoBKFfIBceUeDoldqH72dvYq023D206pQhhlPAKJKQU_u10MQbr1C74bx0OaUsdgaojUHUEqs5AU-fh1PHW2v-8qBBpxegvlBNv8g</recordid><startdate>20190701</startdate><enddate>20190701</enddate><creator>Ha, Phuong Hoai</creator><creator>Anshus, Otto J.</creator><creator>Umar, Ibrahim</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>3HK</scope><orcidid>https://orcid.org/0000-0003-3579-6566</orcidid><orcidid>https://orcid.org/0000-0003-4281-5673</orcidid><orcidid>https://orcid.org/0000-0001-8366-5590</orcidid></search><sort><creationdate>20190701</creationdate><title>Efficient Concurrent Search Trees Using Portable Fine-Grained Locality</title><author>Ha, Phuong Hoai ; Anshus, Otto J. ; Umar, Ibrahim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c312t-8cf04ecb70fe47b7f5b9ac44f5013c51d183c09db6a450ff9a9cc7a60208adc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Benchmarks</topic><topic>Computation</topic><topic>Concurrency</topic><topic>Concurrent computing</topic><topic>Concurrent data abstractions</topic><topic>data locality</topic><topic>Data models</topic><topic>Data storage</topic><topic>Data structures</topic><topic>Energy efficiency</topic><topic>Energy storage</topic><topic>Informasjons- og kommunikasjonsvitenskap: 420</topic><topic>Information and communication science: 420</topic><topic>Layout</topic><topic>Matematikk og Naturvitenskap: 400</topic><topic>Mathematics and natural science: 400</topic><topic>Methodology</topic><topic>performance optimization</topic><topic>Portability</topic><topic>Power efficiency</topic><topic>Random access memory</topic><topic>Searching</topic><topic>System-on-chip</topic><topic>Trees</topic><topic>Upper bound</topic><topic>VDP</topic><topic>Viability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ha, Phuong Hoai</creatorcontrib><creatorcontrib>Anshus, Otto J.</creatorcontrib><creatorcontrib>Umar, Ibrahim</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>NORA - Norwegian Open Research Archives</collection><jtitle>IEEE transactions on parallel and distributed systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ha, Phuong Hoai</au><au>Anshus, Otto J.</au><au>Umar, Ibrahim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient Concurrent Search Trees Using Portable Fine-Grained Locality</atitle><jtitle>IEEE transactions on parallel and distributed systems</jtitle><stitle>TPDS</stitle><date>2019-07-01</date><risdate>2019</risdate><volume>30</volume><issue>7</issue><spage>1580</spage><epage>1595</epage><pages>1580-1595</pages><issn>1045-9219</issn><eissn>1558-2183</eissn><coden>ITDSEO</coden><abstract>Concurrent search trees are crucial data abstractions widely used in many important systems such as databases, file systems and data storage. Like other fundamental abstractions for energy-efficient computing, concurrent search trees should support both high concurrency and fine-grained data locality in a platform-independent manner. However, existing portable fine-grained locality-aware search trees such as ones based on the van Emde Boas layout (vEB-based trees) poorly support concurrent update operations while existing highly-concurrent search trees such as non-blocking search trees do not consider fine-grained data locality. In this paper, we first present a novel methodology to achieve both portable fine-grained data locality and high concurrency for search trees. Based on the methodology, we devise a novel locality-aware concurrent search tree called GreenBST. To the best of our knowledge, GreenBST is the first practical search tree that achieves both portable fine-grained data locality and high concurrency. We analyze and compare GreenBST energy efficiency (in operations/Joule) and performance (in operations/second) with seven prominent concurrent search trees on a high performance computing (HPC) platform (Intel Xeon), an embedded platform (ARM), and an accelerator platform (Intel Xeon Phi) using parallel micro- benchmarks (Synchrobench). Our experimental results show that GreenBST achieves the best energy efficiency and performance on all the different platforms. GreenBST achieves up to 50 percent more energy efficiency and 60 percent higher throughput than the best competitor in the parallel benchmarks. These results confirm the viability of our new methodology to achieve both portable fine-grained data locality and high concurrency for search trees.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPDS.2019.2892968</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0003-3579-6566</orcidid><orcidid>https://orcid.org/0000-0003-4281-5673</orcidid><orcidid>https://orcid.org/0000-0001-8366-5590</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1045-9219 |
ispartof | IEEE transactions on parallel and distributed systems, 2019-07, Vol.30 (7), p.1580-1595 |
issn | 1045-9219 1558-2183 |
language | eng |
recordid | cdi_ieee_primary_8611364 |
source | IEEE Electronic Library (IEL) |
subjects | Benchmarks Computation Concurrency Concurrent computing Concurrent data abstractions data locality Data models Data storage Data structures Energy efficiency Energy storage Informasjons- og kommunikasjonsvitenskap: 420 Information and communication science: 420 Layout Matematikk og Naturvitenskap: 400 Mathematics and natural science: 400 Methodology performance optimization Portability Power efficiency Random access memory Searching System-on-chip Trees Upper bound VDP Viability |
title | Efficient Concurrent Search Trees Using Portable Fine-Grained Locality |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T15%3A15%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20Concurrent%20Search%20Trees%20Using%20Portable%20Fine-Grained%20Locality&rft.jtitle=IEEE%20transactions%20on%20parallel%20and%20distributed%20systems&rft.au=Ha,%20Phuong%20Hoai&rft.date=2019-07-01&rft.volume=30&rft.issue=7&rft.spage=1580&rft.epage=1595&rft.pages=1580-1595&rft.issn=1045-9219&rft.eissn=1558-2183&rft.coden=ITDSEO&rft_id=info:doi/10.1109/TPDS.2019.2892968&rft_dat=%3Cproquest_RIE%3E2243276090%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2243276090&rft_id=info:pmid/&rft_ieee_id=8611364&rfr_iscdi=true |